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BospacTHas MakyiIspHas JereHepalys — COMaIbHO 3HAYMMOe 3a00/IeBaHIe, YIPOXKalollee EHTPaIbHOMY 3PCHHIO YElOBEKa.
OCHOBHBIM METOZIOM JHArHOCTHKH JaHHOTO 3a00JICBaHHs SBISICTCS ONTHYECKas KOrepeHTHas Tomorpadus. B cBsi3u ¢ pocTom 3a-
00J1eBaEMOCTH, yBEIMUMBACTCS HArpy3Ka Ha Bpauya-o(ranpmonora. B 1aHHOM 0030pe IpeacTaBiIeHbl COBPEMEHHbIE Pa3pabOTKH HC-
TI0JIb30BaHHs HCKYCCTBEHHOTO MHTEIIEKTA B IMAaTHOCTUKE BO3PACTHONW MAKYIISPHOM JIereHepalnH.

Knrouesvie cnosa: Bo3pacTHasi MakyJsipHast AEreHEpALisi, ONTHYECKast KOTCPEHTHAs TOMOrpadusi, HCKYCCTBCHHBII HHTEIUICKT,
HelpoceTh, aJITOPUTMBI ITyOOKOro 00y4eHHs, OOMapKepEI.
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DIAGNOSIS OF AGE-RELATED MACULAR
DEGENERATION USING ARTIFICIAL INTELLIGENCE

Age-related macular degeneration is a socially significant disease that threatens human vision. The main diagnostic method of this
disease is optical coherence tomography. Due to the increase in morbidity, the load on the ophthalmologist is increasing. This review
presents the latest developments in the implementation of artificial intelligence in the diagnosis of age-related macular degeneration.

Key words: age-related macular degeneration, optical coherence tomography, artificial intelligence, neural network, deep learn-

ing algorithms, biomarkers.

BospactHas makynspHas —JIereHepanus
(BM/JI) sBnseTcss OMHOW W3 BEAYIINX IPHYUH
HEOOpaTHMOM TOTEpH NEHTPAIBLHOTO 3pPEHHSA B
Pa3BUTHIX CTpaHaxX CpeAu MalMeHToB crapiie 50
net [1]. TTo maHHBIM aBTOPOB YKCIIO MAIIMEHTOB C
BM/I pacter u k 2040 rogy MOXET JOCTUTHYTH
288 MUIMOHOB yenoBek [2,3,4]. DTo cBsI3aHO ¢
YBEIMYCHUEM TMPOAOILKUTEIBHOCTH JKU3HU U
TEHACHINEH K «OMOJIOKEeHHUI0» 3abosieBanus. B
CBSI3U C 3TUM JIaHHAs MATOJIOTHSI SBIAETCS COIU-
AITBHO-YKOHOMHYECKOW MPOOIEMOM, TMOCKOIBKY
MPUBOANT K WHBaTUAW3anuy Hacenenws [5]. B
CTPYKTYpE MEPBUYHOM MHBaNIMAHOCTH 10 BM/J]
OONBHBIE B TPYIOCIOCOOHOM BO3pacTe COCTaB-
ns110T 21%, B IEHCMOHHOM — JTaHHBIA ITOKa3aTelb
Bo3pactaeT 32%. Ilpu »TOM dYacToTa MO3MHEH
craniun BMJI, OCIOXHEHHOM MaTOJIOrHYeCKON
HEOBACKYJspU3anued, Mpu KOTOpPOW TpedyeTcs
aKTHBHOE JICYCHHE IaI[MEeHTOB, cocTaBiisgeT 4,6-
20% [6].

K ocHOBHEIM ¢akTOopaM puCKa pa3BUTHUS
BM/JI oTHocATcs: reHeTnyeckas Mpeapacroso-
JKEHHOCTBh, BO3PACT, pacoBasl MPUHAIJIEKHOCTD,
KypEeHHE, COCYAMCThIC 3a00JICBaHUsS, OXKHUPCHHE.
ITaTorenes 3aboneBanust BKItOYaeT B ceOs Jere-
HEPAaTUBHBIE N3MEHEHHS B HAPY)KHBIX CIIOSIX CET-
yaTKu (HapyuieHne (pyHKIUH NUTMEHTHOTO SIIH-
Tenwsl, CHKeHUue 3((HEKTUBHOCTH TEMaTOPETH-
HaJBHOTO Oaphepa, YBEIWUCHHE SHIOTEIHATh-
HBIX (haKTOPOB pocTa cocyoB) [2,6,7].

HawnbGonee TouHbIM W WHPOPMATHBHBIM
METOA0M JuarHoctTuku BMJI siBiseTcs omtude-
ckast korepeHtHass Tomorpadus (OKT), xoropas
MO3BOJISIET OLEHUTh MPWKU3HEHHYIO MOCIOUHYIO
CTPYKTYpY CeT4aTKu M xopuouzaeu [7]. Ha cero-
JHSIIHAN JICHb B MEIUIIMHY, B TOM YHCIE U O(-
TaIbMOJIOTHIO, AKTUBHO BHEIPSETCS WCKYC-
crBeHHbId mHTEIIIEKT (M) [8]. Ero mcmoms3osa-
Hue g oueHkn cHUMKOB OKT ceryaTkn MOKeET
00JIErYuTh M ONTHMHU3UPOBATh pabOTy MeEAUIMH-
CKOro pabOTHHKA, a TaKKe OXBATUTHh OOINBINWI
0o0beM HcclienyeMbIx mnarueHToB ¢ BMJI, 4ro
MTO3BOJIUT MOBBICUTH CBOEBPEMEHHOE BBISBICHUE U
OnpeAeuTh TAKTUKY JICUCHUsI MauueHToB ¢ BMJ{
[9,10]. B manHOM 0030pe TpEACTaBICHBI COBpE-
MEHHBIC MPOTrPaMMbl JUArHOCTHUKHU, KiIaccHpuka-
MM U TPOTHO3UPOBAHUS JICUCHUS TAIIMEHTOB C
BM/I npu noMo1u HeHpOCeTH.

Bo3mo:xxnoctn UM npu BBISABJIEHUHM H
kiaaccupurkanuu BMJI. 3a nocnegHne HECKOIb-
KO JIET aKTHBHO BeAYTCSl pabOTHI IO BBISIBICHUIO
u xinaccuduuposanuo BMJI npu momomu MU.
ITpumenenne MM nns aHanuza MeIMIIMHCKHUX
M300paXKeHHUH B [IEJIOM JIEMOHCTPHUPYET BHICOKYIO
s¢pdpextuBHOCTh [11]. Tak, M. Treder et al. pas-
paboTaiy M OLEHWINM NOPOrpaMMy TIIyOOKOTrO
OoOy4YeHHSI C  HCIIOJb30BAHMEM  IUIAT()OPMBI
TensorFlow, pa3spabortannoii Google, nns oO6Ha-
pyxenus BM/] no 100 pasMeueHHBIM CHUMKaM
OKT (50 ¢ BM u 50 6e3 BM/I), npoaeMoH-
CTPHPOBAIN TOYHOCTH pe3yabraroB 0,997 B
rpynne BM/I u 0,9203 B 310poBo#i rpynme ¢ BbI-
cokoit smaunmocteio (P <0,001) [12]. Amao-
rudHo Venhuizen et al. mpeacTaBWid ajJropUTM
MAIIMHHOTO OOy4YeHHs] Ui aBTOMAaTHYECKOTO
oOHapyxeHuss u kinaccudukaruu BMJ[ ¢ wuc-
nostb3oBaHueM CHUMKOB OKT, kKoTOphIi oreHu-
BaeT crtaauu Tspkectu BMJI u oTnnMuaer ux ot
3I0POBOM KOHTPOJIBHOW Tpynmbl 0e3 HeoOXxoau-
MOCTH TOYHOW MPEABAPUTEIHLHON CErMeHTaluu
CIIOEB ceTyaTku. Ha OCHOBe MOJydeHHBIX pe-
3yJIBTATOB YYEHBIMH OBUI CAENaH BBIBOJA, YTO
MPOU3BOJUTEIBHOCTE CHUCTEMBI OJM3Ka K MHE-
Huto crneruanuctoB (AUC cocraBuna 0,980,
qyBCTBHUTENBHOCTE — 98,2%, cnenmpuvHocTh —
91,2% [13]. Yuensie Khan A. et al. npemnoxunm
kimaccuduranuposath OKT- m300paxkeHus ¢ ma-
KYyJIApHOM MAaTOJIOTHMEH C WCIOJb30BaHUEM TH-
OpUAHOTO TIIYOOKOTO OOYYESHUSI M ONITUMHU3AIUN
roApaxkanueM MypaBbuHOW KoioHuu (ACO).
Tounoctes MeToma coctaBuma 99,1% ¢ ACO u
97,4% 6e3 ACO [14].

B nccnemosanmsx Arnt-Ole Tvenning et al.
C TPUMCHEHHEM MOJEIH TIyOOKOTO OO0ydeHHUS
OptiNet s knaccudpukanuu BM/J Opiio oOHa-
pyxeHno, uro npu BM/] MoryT OBITH H3MEHEHHUS B
RNFL (cmoit HEpBHBIX BOJIOKOH CETYATKH) U CO-
CYyIUCTON 000JIOYKEe, OIHAKO JTH PE3YIbTATHI
ele mpeacTout uccnenonath [15]. C nenpo Mu-
HAMH3AIMN OIMUOOK HelpoHHo# cetn Y. Yan et
al. mus obmapykeHus u Kiaccubukanmu BMJT
ucnonb3oBand UM ¢ BBeAEHHBIM MEXaHHU3MOM
BHUMAaHUs, KOTOPBIA cMellaeT (OKyC BHUMAaHUS
Ha MaTOJIOTUYECKUI y4aCTOK, MUHYS HHTAaKTHYIO
obmacte ceruatkm [16]. B wumcciaemoBanum
RAZORBILL mnpexacraBieHbl aJrOpUTMBI CET-
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MEHTAIlNH, KOTOPBIE MPOBOISAT aHAIN3 CHUMKOB
OKT B 3D-pexuMe W BBIICISAIOT IMAaTOJIOTHYEC-
CKHE YYaCTKH CETYATKU (B TOM YHCIIE ONpPEIeIisi-
10T 00BEM MAaTOJIOTHUECKON JKUAKOCTH). JlaHHBIN
QITOPUTM MOXET OBITH IMOJIE3eH OQTAIBLMOJIOTY
JUTSL OTIPEJICIICHNs] TAKTUKNA U KOHTPOJIA JICUEHHUS
MarMeHToB Ha mo3mHe#d craguun BMJT [17].
Jinyoung Han et al. coszmann momens rimy6oKoro
oOyuenus s kinaccudukammu BMJ] Ha ocHOBe
TpeX CTPYKTYP CBEPXTOYHBIX HEHPOHHBIX CETCH
(VGG-16, VGG-19 u ResNet) u AByX WHIUBH-
IyaJIbHBIX CJIOEB KJIacCU(pUKANNK (TTOTHOCTHIO
CBSI3aHHBIN CIIOW C OTCEBOM U TJIOOATBLHBIM CPEJl-
HUM TIYJIOM), KOTOpasi MOXET OBITh IMOJIC3HA IS
MIPOTHO3UPOBaHMUS O0TBeTa Ha jedeHue [18]. Tak-
K€ WHTEPECHO HKCCIEeOBAaHNE YCOBEPIIEHCTBO-
BaHHOU CBepxTouHOM HeMponHOU cetu SFFT-
CapsNet (karcynpHast Ce€Thb JUISI  YIIYYIICHUS
kmaccudukarmun OKT-uzobpaxenuit). [Ipemo-
YKECHHAsI MOJICIIb MPEBOCXOMIIa 0a30BbIE MOJICIH
M0 TOYHOCTHU, YyBCTBUTCIHHOCTH, MTPEIIM3HOHHO-
CTH, CHEUU(PUYHOCTH W TUIOIAJN TOJ| KPUBOH
npu noctpoernn ROC-kpusoit (AUC) [19]. Pan
ABTOPOB HE3aBHCHUMO JIPYT OT JIpyra pa3zpadoranu
MporpaMMHOe oOecriedeHrne, KOTOPOe MO3BOJISIET
obHapyxuBaTh He TONBKO BM/I, HO 1 muabeTu-
YeCKyl0 PETMHONATHIO WU JpPYTrue pachpocTpa-
HEHHBIC 3a00JIeBaHus ceTUaTKu. [1o MX MHEHHIO,
BHeZIpeHUE B JiedeOHbIe yupexkaenus MU saBiser-
Csl aKTyaJIbHOM 3a/1aueii 11 0OHApY)KSHUS MaKy-
nsipHO# maronoruu [20-29].

buomapkepsl nporpeccupoBanus BMJI.
BrisiBiieHre nmpu3HakoB mporpeccupoBanis BM/J]
SIBIISICTCS. OJTHUM M3 TIEPCIICKTUBHBIX HATIPABIICHUHA
WCTIONb30BaHUA HCKYCCTBEHHOTO HHTEIUIeKTa. B
cBoux wuccnenoBanusx T.H. Rim et al., mampas-
JICHHBIX Ha BBISBJICHUE OMOMapKEPOB C UCIIONIB30-
BaHUEM allTOpPUTMa TIIYOOKOro OOy4eHHs, OOHa-
PYXIIH OCOOEHHOCTH TEYEHHUS IMO3IHEH CTaguu
BM]/] y naupeHToB B 3aBUCUMOCTH OT Teorpadu-
4ecKuX W dTHHUYeckuX pasnnunit [30]. B uccnemo-
Banusax U. Schmidt-Erfurth et al. ObuM MneHTH-
(uIpoBaHEl TTATOTHOMOHHWYHBIC OHOMAapKephI,
cnenuUIHbIC TSI KOHBEPCUHU B CTOPOHY HEOBAC-
KyJsipHoit ¢dopmel BMJI mnu reorpadudeckoi
arpoduH, U PaH)KUPOBAHBI B COOTBETCTBHUHU C HX
MPOTHOCTUYECKON 3HAYUMOCTBIO. JTO 00ecredu-
BaeT WHAWBUAYAIBHBIA IMOAXOJA K TAalWeHTy, a
TAK)KE MOXET OBITh HCIIOJH30BAHO B OOJBIINX
MacitabaxX, TMOCKOJbKY HE TpeOyeT 3arpaTr Io
CPaBHEHHUIO C TEHETHMYECKHM TECTUPOBAHHEM, KO-
TOpOE B HACTOsIIEE BpeMsl Tpemiaraercs Jyist
BHEAPCHUS TEPCOHATM3UPOBAHHON  MEIMIIUHBI
npu BM/I [31]. S.M. Waldstein et al. pazpaGoranu
QITOPUTM UCKYCCTBEHHOT'O MHTEIUICKTA JUISL OICH-
ki canMkoB OKT Ha mpemMeT THIMAYIHBIX MPOSIB-
JIeHWi panHel u npomexyTouHoit BM/I. Onu 06-

Hapy>XUIIM, YTO YBEIWYCHHNE KOJIMYECTBA U BBICO-
THI APY3, & TaK)Ke TOSBICHHE W YBEINYECHHUE TH-
neppedIeKTHBHBIX 04aroB B ()oBea XapaKTECPHBI
JUTSL TIPOTPECCUPOBAHUS 3a00JICBaHHS B HEOBACKY-
asipuyto Gopmy [32]. Hcnonb3yeMblii MeToa Ma-
IIMHHOTO OOYYeHHUs Ui aBTOMAaTH3MPOBAHHOTO
aHanmm3a W300pakeHWid, TpeacTaBieHHOro H.
Bogunovi¢ et al., uro mo3Bonmno co3marh MPOrHo-
CTHYECKYIO MOJEINb ISl ONpPEAeTIeHNsT PUCKa pas-
BuTUsl npomexytouHod BMJI. Ona cnocobna
WICHTU(DUIIUPOBAT, M XapaKTEPU30BaTh OTNENb-
HBIE JIpy3bl Ha HCXOJHOM YPOBHE W B TEUCHHE
BPEMCHH CJICIUTh 32 WX PAa3BUTHUEM [0 JaHHBIM
canmkoB OKT (AUC = 0,75). Hanuumne Hamex-
HBIX OMOMapKepOB TPOTPECCHPOBaHUS 3a00JIeBa-
HUA SIBJSIETCS Ba)KHEUIIEW NpeIroCcChbUIKON st
pa3pabOTKH HMHHOBAIMOHHBIX TEPATIEBTUYECKUX
CTpaTeruii, 0COOCHHO MPH MEUICHHO U M3MEHYH-
BO TIPOTpeCcCHpYyIolieM 3a00JeBaHUM, TAKOM Kak
npomexyroynas BM/I [33]. B 5-nernem wuccre-
nosanuu K. Sarici et al. Ha Momenu MalIMHHOTO
00ydJeHHUS BBIJICMIN TakKue OMOMapKephl, KaK TH-
neppedaekTHBHBIC OYary, nepudoBeaTbHas reo-
rpadudeckas aTpoQus 1 APY3CHOUIHAS OTCIOWKA
MUTMEHTHOTO STHUTEINNS, CUIIBHO KOPPEIUPYIOIINE
¢ pasBuTHeM CyOGoBeanbHON TreorpapuuecKon
atpodun. [Ipu aHaTM3E MPOTrHOCTUIECKON MOJIEIN
TOJIIMHA CJI0s1 (POTOPEIENITOPOB M KOMILIEKCA —
MUTMEHTHBIA SruTenuii-+tMmeMOpana bpyxa Obum
WICHTH(PUIIUPOBAHEI KaK HauOoJjee BaxKHbIe OMO-
MapKepbl B IPOTHO3MPOBAHUH Pa3BUTHUS CyO(oBe-
anpHO# reorpaduyeckoit arpoduu [34]. dns BbI-
sBIeHUS TUQQEPEHIIMPOBKU TOATHIIOB Teorpa-
¢uueckoii arpoduu G. Zhang et al. pazpabGoranu
METOJT TIIyOOKOTO O0yUYeHHS, KOTOPBIA TaKXe MO-
KeT OBITh HCIOJIb30BaH JJIsi MOHUTOPWHTA TPO-
rpeccupoBanus 3aboaeBanus [35].
MyJabTHUMOAANBHBIA MOAX0A K JMArHo-
ctuxke BMJI. Poct npon3BoUTENBHOCTA BBIYUC-
JIUTEITBHOW TEXHUKU W 3HAYUTEIBHBIA OIBIT MPH-
MCHEHUS UHTCIUICKTYaIbHBIX alTOPUTMOB IIPHUBE-
T K PaclpoCTPaHEHUIO MYJIbTUMOJAIBHBIX TOA-
XOJIOB, TIO3BOJISTIOIINX OOpadaThIBaTh Pa3HOPO-
HbIC HWCTOYHWKM JaHHBIX. CIleyeT y4YUTHIBATS,
yro OKT sBnsiercss HEOThbEMIIEMBIM U BBICOKOMH-
(hopMaTHBHBIM METOJIOM JTUATHOCTHKH 3a00JeBa-
HUI MakymsipHoil obOmactu, a OKT ¢ ¢ynkimeit
anruorpaduun U dyHAyCc-hoTorpadu-poBanue
TJIA3HOTO JIHA B PAZE CIly4aeB MOTYT OBITh MOJIE3-
HBIMU JUIS BBISBICHUS M YTOYHCHHS JTUArHO3a.
Onwucanneiii K.A. Thakoor et al. mynsTrMomans-
HBI Tiogxox (pasmmansie pexkumbl OKT u OKT ¢
(dyHKIMeH anruorpaduu) C  HUCIOJIb30BAHUEM
CBEPXTOYHBIX HEHPOHHBIX CETeH Ml OOHapyxke-
HUA OuomapkepoB BM/JI mokaszan tounocts Pas-
padorannas K.T. Yoo et al. mporpamma riy0oko-
ro 00y4YeHHS JUI aBTOMAaTHUECKOTO OOHAPYKEHHS
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BM/I mokazana Hanbojee BBICOKYIO TOYHOCTh H
3} dexTBHOCTs TPU HCIOIB30BAHMNA CHUMKOB
OKT wu m300paxkeHus: Ta3HOro AHA ¢ (yHIyC-
kamepsl 10 90,2% (TOnoXHUTENbHOE MPOTHOCTHU-
yeckoe 3Hauenue 75,8%) [36]. Ilpu ucmosb3oBa-
Huu Toibko cHuMKOB OKT AUC cocraBuna
0,906, Tounoctp — 82,6%, a cHUMKOB (yHIYC-
kameps r1azaoro gHa AUC — 0,914 u TogHOCTh —
83,5%, npu MynsTuMonansHoM moaxoae AUC —
0,969 u Tounoctb 90,5% [37].

Heo0xoaumocts antu-VEGF Ttepanuu.
IIporpamma WU, paspadorannas Prahs et al. mo3-
BOJISIET ONpeNeNaTh HeoOxoauMocTh aHTu-VEGF
Tepanuy Npu HeoBacKyisipHoH BM/I o cHUMKaM
OKT c tounocTsio mporuo3upoBanus 95,5%. As-
TOpbl IOJYEPKHUBAIOT IOTCHLUUAIBHYIO IOJb3Y
9TOH MpPOrpaMMbl B Ka4eCTBE CHCTEMBI MOJIEPK-
KM TpUHATHS BpadeOHbIX permennid [38]. Taxoke
MpeIIoKEHa apXUTEKTypa TIyOOKOro OO0ydeHWs,
NOTy4YUBILIAs Ha3BaHHWE sensitive structure guided
network (SSG-Net), kotopas nmoka3ssiBaeT 3 hex-
THBHOE IIPOTHO3MPOBAHHE KpPAaTKOCPOYHOU 3(-
¢extuBHOCTH aHTU-VEGF Tepanuu HeoBacky-
nsipHOM BM/I. OTOT METO/] MOTEHIIMANBHO MOXKET
MOMOYh KJIMHHUIIUCTaM OOBSCHUTH HEOOXO/u-
MocTh aHTH-VEGF Ttepanuu, 4toObl W30exkaTh

MOTCHIMAJIIBHOMY  IMAallUCHTY HeO6OCHOBaHHBIX
TpaT Ha HedppeKTHBHOE JiedeHue [39].

B xone uccnenoBanuil aBTOpHI CpaBHUBA-
JI1 BO3MOXXHOCTH MCKYCCTBEHHOT'O WHTEIICKTA C
MHEHHEM CIEIHaINCTOB, JeYalluX MAIeHTOB C
3a00JIeBaHUSAMH CETYATKU. B psme nccnenoBanmii
Bo3MoxkHOCTH WU He ycTymanum MHEHHSM DKC-
MEPTOB U Aaxe npeBocxoamnu ux [40-43]. Onna-
KO HEoOXOAWMO TOMHHTH, YTO I OOydeHHUs
HEHPOHHOW CETH B OOJIBINIMHCTBE CIIy4acB HC-
MOJIL3YIOTCSl CHUMKH manueHToB ¢ BMJI 6e3 co-
MMyTCTBYIOMICH MATOJIOTUH CETYATKH, YTO PENKO
BCTPEUYACTCS B IIPAKTHKE.

3akmouenne. TakuMm 00pa3oM, BO BCeM
MHpE HaOIIomaeTcs TEHICHIMS K pa3paboTkam
HWHTEJJIEKTyaJIbHOM aBTOMaTU3WPOBAHHOM CHUCTe-
MBI TUATHOCTHKH 3a00JICBAaHUI CETYAaTKU Kak I10-
Kazaress HHIYCTPUAFHOTO pa3BUTHsL. Vcmoms3o-
BaHHE HCKYCCTBEHHOTO WHTEJUIEKTa B JHArHO-
ctuke BMJI sBnsieTcs mepcneKTUBHOM 3agadeit
JUTS. JaNTbHEHIIIero U3yueHusl maroreHesa 3abose-
BaHUs, TIOMCKAa OMOMAapKEPOB MPOrPEeCCUPOBAHUS
U OmpejeNieHUs aJeKBaTHOW TaKTHKH JICYCHUS.
OpHako A BHEAPEHHs €ro B JICYEOHYHO IMpak-
THKY €IlI€ IPEICTOUT PEIIUTh psJ ITHYESCKUX U
IIPOU3BOJACTBCHHBIX 3aJa4.
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