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Возрастная макулярная дегенерация – социально значимое заболевание, угрожающее центральному зрению человека. 

Основным методом диагностики данного заболевания является оптическая когерентная томография. В связи с ростом за-
болеваемости, увеличивается нагрузка на врача-офтальмолога. В данном обзоре представлены современные разработки ис-
пользования искусственного интеллекта в диагностике возрастной макулярной дегенерации. 
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DIAGNOSIS OF AGE-RELATED MACULAR  
DEGENERATION USING ARTIFICIAL INTELLIGENCE  

 
Age-related macular degeneration is a socially significant disease that threatens human vision. The main diagnostic method of this 

disease is optical coherence tomography. Due to the increase in morbidity, the load on the ophthalmologist is increasing. This review 
presents the latest developments in the implementation of artificial intelligence in the diagnosis of age-related macular degeneration. 

Key words: age-related macular degeneration, optical coherence tomography, artificial intelligence, neural network, deep learn-
ing algorithms, biomarkers. 

 
Возрастная макулярная дегенерация 

(ВМД) является одной из ведущих причин 
необратимой потери центрального зрения в 
развитых странах среди пациентов старше 50 
лет [1]. По данным авторов число пациентов с 
ВМД растет и к 2040 году может достигнуть 
288 миллионов человек [2,3,4]. Это связано с 
увеличением продолжительности жизни и 
тенденцией к «омоложению» заболевания. В 
связи с этим данная патология является соци-
ально-экономической проблемой, поскольку 
приводит к инвалидизации населения [5]. В 
структуре первичной инвалидности по ВМД 
больные в трудоспособном возрасте состав-
ляют 21%, в пенсионном – данный показатель 
возрастает 32%. При этом частота поздней 
стадии ВМД, осложненной патологической 
неоваскуляризацией, при которой требуется 
активное лечение пациентов, составляет 4,6-
20% [6].  

К основным факторам риска развития 
ВМД относятся: генетическая предрасполо-
женность, возраст, расовая принадлежность, 
курение, сосудистые заболевания, ожирение. 
Патогенез заболевания включает в себя деге-
неративные изменения в наружных слоях сет-
чатки (нарушение функций пигментного эпи-
телия, снижение эффективности гематорети-
нального барьера, увеличение эндотелиаль-
ных факторов роста сосудов) [2,6,7].  

Наиболее точным и информативным 
методом диагностики ВМД является оптиче-
ская когерентная томография (ОКТ), которая 
позволяет оценить прижизненную послойную 
структуру сетчатки и хориоидеи [7]. На сего-
дняшний день в медицину, в том числе и оф-
тальмологию, активно внедряется искус-
ственный интеллект (ИИ) [8]. Его использова-
ние для оценки снимков ОКТ сетчатки может 
облегчить и оптимизировать работу медицин-
ского работника, а также охватить больший 
объем исследуемых пациентов с ВМД, что 
позволит повысить своевременное выявление и 
определить тактику лечения пациентов с ВМД 
[9,10]. В данном обзоре представлены совре-
менные программы диагностики, классифика-
ции и прогнозирования лечения пациентов с 
ВМД при помощи нейросети. 

Возможности ИИ при выявлении и 
классификации ВМД. За последние несколь-
ко лет активно ведутся работы по выявлению 
и классифицированию ВМД при помощи ИИ. 
Применение ИИ для анализа медицинских 
изображений в целом демонстрирует высокую 
эффективность [11]. Так, М. Treder et al. раз-
работали и оценили программу глубокого 
обучения с использованием платформы 
TensorFlow, разработанной Google, для обна-
ружения ВМД по 100 размеченным снимкам 
ОКТ (50 с ВМД и 50 без ВМД), продемон-
стрировали точность результатов 0,997 в 
группе ВМД и 0,9203 в здоровой группе с вы-
сокой значимостью (P <0,001) [12]. Анало-
гично Venhuizen et al. представили алгоритм 
машинного обучения для автоматического 
обнаружения и классификации ВМД с ис-
пользованием снимков ОКТ, который оцени-
вает стадии тяжести ВМД и отличает их от 
здоровой контрольной группы без необходи-
мости точной предварительной сегментации 
слоев сетчатки. На основе полученных ре-
зультатов учеными был сделан вывод, что 
производительность системы близка к мне-
нию специалистов (AUC составила 0,980, 
чувствительность – 98,2%, специфичность – 
91,2% [13]. Ученые Khan A. et al. предложили 
классификацировать ОКТ- изображения с ма-
кулярной патологией с использованием ги-
бридного глубокого обучения и оптимизации 
подражанием муравьиной колонии (ACO). 
Точность метода составила 99,1% с ACO и 
97,4% без ACO [14]. 

В исследованиях Arnt-Ole Tvenning et al. 
с применением модели глубокого обучения 
OptiNet для классификации ВМД было обна-
ружено, что при ВМД могут быть изменения в 
RNFL (слой нервных волокон сетчатки) и со-
судистой оболочке, однако эти результаты 
еще предстоит исследовать [15]. С целью ми-
нимизации ошибок нейронной сети Y. Yan et 
al. для обнаружения и классификации ВМД 
использовали ИИ с введенным механизмом 
внимания, который смещает фокус внимания 
на патологический участок, минуя интактную 
область сетчатки [16]. В исследовании 
RAZORBILL представлены алгоритмы сег-

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Tvenning%2C+Arnt-Ole
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ментации, которые проводят анализ снимков 
ОКТ в 3D-режиме и выделяют патологиче-
ские участки сетчатки (в том числе определя-
ют объем патологической жидкости). Данный 
алгоритм может быть полезен офтальмологу 
для определения тактики и контроля лечения 
пациентов на поздней стадии ВМД [17]. 
Jinyoung Han et al. создали модель глубокого 
обучения для классификации ВМД на основе 
трех структур сверхточных нейронных сетей 
(VGG-16, VGG-19 и ResNet) и двух индиви-
дуальных слоев классификации (полностью 
связанный слой с отсевом и глобальным сред-
ним пулом), которая может быть полезна для 
прогнозирования ответа на лечение [18]. Так-
же интересно исследование усовершенство-
ванной сверхточной нейронной сети SFFT-
CapsNet (капсульная сеть для улучшения 
классификации ОКТ-изображений). Предло-
женная модель превосходила базовые модели 
по точности, чувствительности, прецизионно-
сти, специфичности и площади под кривой 
при построении ROC-кривой (AUC) [19]. Ряд 
авторов независимо друг от друга разработали 
программное обеспечение, которое позволяет 
обнаруживать не только ВМД, но и диабети-
ческую ретинопатию и другие распростра-
ненные заболевания сетчатки. По их мнению, 
внедрение в лечебные учреждения ИИ являет-
ся актуальной задачей для обнаружения маку-
лярной патологии [20-29].  

Биомаркеры прогрессирования ВМД. 
Выявление признаков прогрессирования ВМД 
является одним из перспективных направлений 
использования искусственного интеллекта. В 
своих исследованиях T.H. Rim еt al., направ-
ленных на выявление биомаркеров с использо-
ванием алгоритма глубокого обучения, обна-
ружили особенности течения поздней стадии 
ВМД у пациентов в зависимости от географи-
ческих и этнических различий [30]. В исследо-
ваниях U. Schmidt-Erfurth et al. были иденти-
фицированы патогномоничные биомаркеры, 
специфичные для конверсии в сторону неовас-
кулярной формы ВМД или географической 
атрофии, и ранжированы в соответствии с их 
прогностической значимостью. Это обеспечи-
вает индивидуальный подход к пациенту, а 
также может быть использовано в больших 
масштабах, поскольку не требует затрат по 
сравнению с генетическим тестированием, ко-
торое в настоящее время предлагается для 
внедрения персонализированной медицины 
при ВМД [31]. S.M. Waldstein et al. разработали 
алгоритм искусственного интеллекта для оцен-
ки снимков ОКТ на предмет типичных прояв-
лений ранней и промежуточной ВМД. Они об-

наружили, что увеличение количества и высо-
ты друз, а также появление и увеличение ги-
перрефлективных очагов в фовеа характерны 
для прогрессирования заболевания в неоваску-
лярную форму [32]. Используемый метод ма-
шинного обучения для автоматизированного 
анализа изображений, представленного H. 
Bogunović et al., что позволило создать прогно-
стическую модель для определения риска раз-
вития промежуточной ВМД. Она способна 
идентифицировать и характеризовать отдель-
ные друзы на исходном уровне и в течение 
времени следить за их развитием по данным 
снимков ОКТ (AUC = 0,75). Наличие надеж-
ных биомаркеров прогрессирования заболева-
ния является важнейшей предпосылкой для 
разработки инновационных терапевтических 
стратегий, особенно при медленно и изменчи-
во прогрессирующем заболевании, таком как 
промежуточная ВМД [33]. В 5-летнем иссле-
довании K. Sarici et al. на модели машинного 
обучения выделили такие биомаркеры, как ги-
перрефлективные очаги, перифовеальная гео-
графическая атрофия и друзеноидная отслойка 
пигментного эпителия, сильно коррелирующие 
с развитием субфовеальной географической 
атрофии. При анализе прогностической модели 
толщина слоя фоторецепторов и комплекса ‒ 
пигментный эпителий+мембрана Бруха были 
идентифицированы как наиболее важные био-
маркеры в прогнозировании развития субфове-
альной географической атрофии [34]. Для вы-
явления дифференцировки подтипов геогра-
фической атрофии G. Zhang  et al. разработали 
метод глубокого обучения, который также мо-
жет быть использован для мониторинга про-
грессирования заболевания [35].  

Мультимодальный подход к диагно-
стике ВМД. Рост производительности вычис-
лительной техники и значительный опыт при-
менения интеллектуальных алгоритмов приве-
ли к распространению мультимодальных под-
ходов, позволяющих обрабатывать разнород-
ные источники данных. Следует учитывать, 
что ОКТ является неотъемлемым и высокоин-
формативным методом диагностики заболева-
ний макулярной области, а ОКТ с функцией 
ангиографии и фундус-фотографи-рование 
глазного дна в ряде случаев могут быть полез-
ными для выявления и уточнения диагноза. 
Описанный K.A. Thakoor et al. мультимодаль-
ный подход (различные режимы ОКТ и ОКТ с 
функцией ангиографии) с использованием 
сверхточных нейронных сетей для обнаруже-
ния биомаркеров ВМД показал точность Раз-
работанная K.T. Yoo et al. программа глубоко-
го обучения для автоматического обнаружения 

https://www.sciencedirect.com/science/article/pii/S2589750021001345#!
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ВМД показала наиболее высокую точность и 
эффективность при использовании снимков 
ОКТ и изображения глазного дна с фундус-
камеры до 90,2% (положительное прогности-
ческое значение 75,8%) [36]. При использова-
нии только снимков ОКТ AUC составила 
0,906, точность – 82,6%, а снимков фундус-
камеры глазного дна AUC – 0,914 и точность – 
83,5%, при мультимодальном подходе AUC – 
0,969 и точность 90,5% [37]. 

Необходимость анти-VEGF терапии. 
Программа ИИ, разработанная Prahs et al. поз-
воляет определять необходимость анти-VEGF 
терапии при неоваскулярной ВМД по снимкам 
ОКТ с точностью прогнозирования 95,5%. Ав-
торы подчеркивают потенциальную пользу 
этой программы в качестве системы поддерж-
ки принятия врачебных решений [38]. Также 
предложена архитектура глубокого обучения, 
получившая название sensitive structure guided 
network (SSG-Net), которая показывает эффек-
тивное прогнозирование краткосрочной эф-
фективности анти-VEGF терапии неоваску-
лярной ВМД. Этот метод потенциально может 
помочь клиницистам объяснить необходи-
мость анти-VEGF терапии, чтобы избежать 

потенциальному пациенту необоснованных 
трат на неэффективное лечение [39].  

В ходе исследований авторы сравнива-
ли возможности искусственного интеллекта с 
мнением специалистов, лечащих пациентов с 
заболеваниями сетчатки. В ряде исследований 
возможности ИИ не уступали мнениям экс-
пертов и даже превосходили их [40-43]. Одна-
ко необходимо помнить, что для обучения 
нейронной сети в большинстве случаев ис-
пользуются снимки пациентов с ВМД без со-
путствующей патологии сетчатки, что редко 
встречается в практике.  

Заключение. Таким образом, во всем 
мире наблюдается тенденция к разработкам 
интеллектуальной автоматизированной систе-
мы диагностики заболеваний сетчатки как по-
казателя индустриального развития. Использо-
вание искусственного интеллекта в диагно-
стике ВМД является перспективной задачей 
для дальнейшего изучения патогенеза заболе-
вания, поиска биомаркеров прогрессирования 
и определения адекватной тактики лечения. 
Однако для внедрения его в лечебную прак-
тику еще предстоит решить ряд этических и 
производственных задач. 
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