- Статическая коррекция лица при повреждении лицевого нерва в клинике опухолей головы и шеи / А.П. Поляков [и др.] // Опухоли головы и шеи. 2017. Т. 7, №2. С. 53-59.
- Incidence of postoperative facial weakness in parotid tumor surgery: a tumor subsite analysis of 794 parotidectomies / H. Jin [et al.] // BMC Surg. – 2019. – Vol.19, № 1. – P. 199. https://doi.org/10.1186/s12893-019-0666-6
- 8. Temporary Facial Nerve Paralysis after Parotidectomy: The Mansoura Experience, A Prospective Study / M. Fareed [et al.] // The Egyptian Journal of Surgery. 2014. №.33. P. 117-124. https://doi.org/10.4103/1110-1121.131677
- Predictive factors of facial palsy after parotidectomy: analysis of 166 operations / A.R. Lameiras [et al.] // Rev. esp. cir. oral maxilofac. 2019. – Vol.41, № 3. – P. 109-114.
- 10. Identification of facial nerve during parotidectomy: a combined anatomical & surgical study / S. Saha [et al.] // Indian J Otolaryngol Head Neck Surg. 2014. Vol.66, № 1. P. 63-8. Doi: 10.1007/s12070-013-0669-z. Epub 2013 Jul 24.

REFERENCES

- 1. Zedan A., Rezk K., Elshenawy A., Nabih O. and Atta H. Complications of Parotid Surgery—10 Years' Experience. Journal of Cancer Therapy. 2020;11: 306-323. doi: 10.4236/jct.2020.115025 (In Engl.)
- Bittar RF, Ferraro HP, Ribas MH, Lehn CN. Facial paralysis after superficial parotidectomy: analysis of possible predictors of this complication. Braz J Otorhinolaryngol. 2016 Jul-Aug;82(4):447-51. doi: 10.1016/j.bjorl.2015.08.024 (In Engl.)
- Kaprin A.D., Starinskii V.V., Shakhzadova A.O. Zlokachestvennye novoobrazovaniya v Rossii v 2021 godu (zabolevaemost' i smertnost') (Malignant neoplasms in Russia in 2021 (morbidity and mortality)). M.: MNIOI im. P.A. Gertsena filial FGBU «NMITs radiologii» Minzdrava Rossii, 2022: 252 (In Russ)
- Mutlu V, Kaya Z. Which Surgical Method is Superior for the Treatment of Parotid Tumor? Is it Classical? Is it New? Eurasian J Med. 2019 Oct;51(3):273-276. doi: 10.5152/eurasianjmed.2019.19108 (In Engl.)
- Bradley PJ. Frequency and Histopathology by Site, Major Pathologies, Symptoms and Signs of Salivary Gland Neoplasms. Adv Otorhinolaryngol. 2016;78:9-16. doi: 10.1159/000442120 (In Engl.)
- Polyakov A.P., Reshetov I.V., Ratushniy M.V., Matorin O.V., Filushin M.M., Rebrikova I.V., Mordovskiy A.V., Kutsenko I.I., Nikiforovich P.A., Sugaipov A.L., Pugaev D.M. Static correction of the face due to facial nerve damage in treatment of head and neck tumors. Head and Neck Tumors (HNT). 2017;7(2):53-59. https://doi.org/10.17650/2222-1468-2017-7-2-53-59 (In Russ.)
- Jin, H., Kim, B.Y., Kim, H. [et al.] Incidence of postoperative facial weakness in parotid tumor surgery: a tumor subsite analysis of 794 parotidectomies. BMC Surg 19, 199 (2019). https://doi.org/10.1186/s12893-019-0666-6 (In Engl.)
- 8. Fareed M., Mowaphy, K., Abdallah, H. and Mostafa, M. (2014) Temporary Facial Nerve Paralysis after Parotidectomy: The Mansoura Experience, A Prospective Study. The Egyptian Journal of Surgery, 33, 117-124.https://doi.org/10.4103/1110-1121.131677 (In Engl.)
- 9. Lameiras A. R. [et al.] Predictive factors of facial palsy after parotidectomy: analysis of 166 operations //Rev. esp. cir. oral maxilofac. 2019. C. 109-114. (In Engl.)
- Saha S, Pal S, Sengupta M, Chowdhury K, Saha VP, Mondal L. Identification of facial nerve during parotidectomy: a combined anatomical & surgical study. Indian J Otolaryngol Head Neck Surg. 2014 Jan;66(1):63-8. doi: 10.1007/s12070-013-0669-z. (In Engl.)

УДК 611 © Коллектив авторов, 2025

К.Ш. Ганцев, С. Файзализода, Ш.Р. Кзыргалин, А.В. Мансурова, Ш.Х. Ганцев **ЛИМФОВЕНОЗНОЕ СОУСТЬЕ:**

НЕДОСТАТОЧНОСТЬ СФИНКТЕРА И ЕГО ПОСЛЕДСТВИЯ

ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России, г. Уфа

Цель исследования. Изучение лимфовенозного соустья при недостаточности сфинктера.

Материал и методы. Проведена эвисцерация терминального отдела грудного лимфатического протока из 15 трупов. Критериями включения в исследование являлись отек и асцит, которые наблюдались у больных, умерших от различных заболеваний. Данные из истории болезни были получены после проведения аутопсии. Выделение терминального отдела грудного лимфатического протока осуществлялось по модифицированной авторской запатентованной методике. Жировая клетчатка из полученного биоматериала была кавитирована ультразвуковым аппаратом для лучшей визуализации архитектуры сосудов и для идентификации лимфовенозного соустья с зоной сфинктерного аппарата.

Результаты. Представлены крайне редкие случаи обнаружения тромбов в лимфовенозном соустье, образовавшихся в просвете лимфатического сосуда, что привело к его обструкции и, как следствие, к нарушению его баланса. В статье представлены уникальные макрофотографии тромба.

Ключевые слова: сфинктер, лимфовенозное соустье, тромб.

K.Sh. Gantsev, S. Faizalizoda, Sh.R. Kzyrgalin, A.V. Mansurova, Sh.Kh. Gantsev LYMPHOVENOUS ANASTOMOSIS: SPHINCTER INSUFFICIENCY AND ITS CONSEQUENCES

The aim of the study was to study the lymphovenous anastomosis in sphincter insufficiency.

Material and methods. Evisceration of the terminal portion of the thoracic lymphatic duct from 15 cadavers was performed. The inclusion criteria were edema and ascites, which were observed in patients who died from various diseases. The medical history was obtained after the autopsy. The isolation of the terminal part of the thoracic lymphatic duct was carried out according to a modified author's patented technique. Adipose tissue from the obtained biomaterial was cavitated with an ultrasound machine for better visualization of the vascular architecture and for identification of the lymphovenous junction with the sphincter apparatus zone.

Results. The study showed detected rare cases of thrombi in the lymphovenous anastomy, formed in the lumen of the lymphatic vessel, which leads to its obstruction and, as a result, imbalance of the lymphovenous anastomy. The article presents unique macro photos of the thrombus.

Key words: sphincter, lymphovenous anastamosis, thrombus.

Сфинктер лимфовенозного соустья играет ключевую роль в регулировании оттока лимфы, что в свою очередь поддерживает весь процесс лимфообращения в организме. При недостаточном функционировании сфинктера кровь из просвета вены попадает в лимфатическую систему. Флеботромбоз практически всегда приводит к блокаде лимфатического сосуда, что происходит из-за проникновения факторов свертывания, таких как тромбин, из кровеносных сосудов, насыщенных тромбоцитами, в окружающие ткани [1]. Это проникновение обусловлено нарушением градиента давления между венозным и лимфатическим сосудами. В нормальных условиях в здоровом организме тромбопластин образуется исключительно при повреждении сосуда, активируя фактор свертывания VII, что запускает каскад гемостатических реакций и способствует образованию тромбина [2]. При летальном исходе образование тромбов прекращается. Сфинктер с клапанами регулирует продвижение лимфы из терминального отдела грудного лимфатического протока в вену. Если давление в подключичной вене составляет 100 ± 10 мм вод. ст. [3], то для продвижения лимфы из терминального отдела грудного лимфатического протока создается давление сфинктером выше, чем в вене. Нарушение его работы ведет к застою лимфы. Такие изменения отрицательно влияют на общее состояние здоровья человека, усугубляют его самочувствие и способствуют развитию таких осложнений, как тромбоз лимфатического сосуда, который сопровождается обструкцией просвета лимфатического сосуда. Клапаны, которые разделяют просвет лимфатического сосуда от венозной системы, выполняют функцию предотвращения обратного тока лимфы (рис. 2). В нормальных условиях они обеспечивают односторонний ток лимфы, что способствует правильному лимфообращению. Однако при патологии лимфовенозного соустья происходит нарушение этого процесса, сопровождающегося недостаточностью лимфообращения. В этом контексте сфинктер выступает одной из ключевых структур, играющих роль в поддержании баланса в системе лимфообращения. Его корректное функционирование необходимо для обеспечения стабильного движения лимфы и предотвращения ее застоя.

Целью исследования является изучение лимфовенозного соустья при недостаточности сфинктера.

Материал и методы

Выделение лимфовенозного соустья. Лимфовенозное соустье было эвисцерировано из 15 трупов (7 мужчин и 8 женщин), из них 8 умерших имели злокачественные новообразования и 7 – другие заболевания и травмы. Возраст исследуемых был от 60 до 90 лет, средний возраст – 75±12 лет. Эвисцерация терминального отдела грудного лимфатического протока из трупов проводилась следующим образом: выполнялся продольный разрез от нижнего края щитовидного хряща до лобковой области с рассечением кожи и подкожной жировой клетчатки. Грудина рассекалась и извлекалась, после этого были пересечены грудино-щитовидные и грудино-подъязычные мышцы, обнажая общую сонную артерию, внутреннюю яремную вену и блуждающий нерв. Париетальный листок внутришейной фасции поднимался и рассекался вместе с сосудистым пучком. Для обнажения подключичной вены рассекалась соединительная ткань на задней поверхности ключицы, далее удалялась жировая клетчатка переднего средостения и рассекалась плечеголовная вена. Терминальная часть грудного лимфатического протока (73,3%) впадала в подключичную вену в 11 случаях или в 4 случаях (26,6%) во внутреннюю яремную вену [4].

Диссекция ультразвуковым аппаратом исследуемого материала (жировая ткань с зоной лимфовенозного соустья). Выделение сосудов проводилось с помощью ультразвукового аппарата Ly Sonix 3000 ® с PulseSelect (Byron Medical Inc., США) по методу, разработанному профессором Ганцевым Ш.Х. [5]. Этот метод сонолиподеструкции применялся ex vivo. В клетчатку инъекционно вводился физиологический раствор из расчета 10 мл на 20-30 мг удаленных тканей. Затем с помощью аппарата Ly Sonix 3000 ® с PulseSelect выполнялась сонолиподеструкция, в результате которой жировая ткань превращалась в эмульсию. Для идентификации венозных сосудов биоматериал подвешивался на алюминиевую конструкцию для фиксации. В полость распавшихся вен были введены зонды для обнаружения яремноподключичного угла, куда в большинстве случаев впадает терминальный отдел грудного лимфатического протока (рис. 1).

Рис. 1. Макрофото фиксированного биоматериала: 1– подключичная вена; 2 – внутренняя яремная вена

Макроскопическое исследование сфинктера и полости лимфатического сосуда. В области лимфовенозного соединения, открывающегося в подключичную или внутреннюю яремную вены, присутствуют полулунные клапаны, которые служили ориентиром для идентификации лимфовенозного соустья. Клапаны, расположенные между просветом лимфатического сосуда и венозной системой, играют важную роль в поддержании физиологического направления потока лимфы, предотвращая ее обратное движение (рис. 2). Эти структуры обеспечивают одностороннее движение лимфатической жидкости, что является ключевым для функционирования лимфатической системы и предотвращает застой лимфы в сосудах. В просвет лимфатического сосуда был введён зонд диаметром 2 мм (рис. 3).

Рис. 2. Клапан лимфовенозного соустья

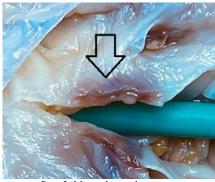


Рис. 3. Макрофото сфинктера. Сфинктер рассечен поперечно (стрелка)

Результаты и обсуждение

Пациент М., 65 лет, с гиперкоагуляционным синдромом жаловался на постоянные отеки нижних конечностей, асцит и общий отек. После летального исхода была проведена эвисцерация терминального отдела грудного лимфатического протока. В ходе процедуры обнаружили, что внутри просвета лимфатического сосуда образовался тромб размером 3-4 мм, который и стал причиной его обструкции и нарушением баланса лимфообращения (рис. 4).

При аутопсии мужчины М., 60 лет был эвисцерирован терминальный отдел грудного лимфатического протока. В ходе исследования обнаружили, что внутри просвета лимфатического сосуда образовались макро- и микро-

тромб. Из истории болезни выяснилось, что у мужчины был перелом ключицы с травмой сосудисто-нервного пучка. Травма этой области вызвала нарушение функционирования сфинктерного аппарата лимфовенозного соустья, в результате которого и образовались тромбы (рис. 5).

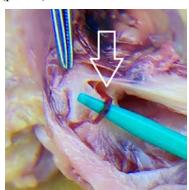


Рис. 4. Макрофото образовавшегося внутрипросветного тромба при недостаточности функционирования сфинктера

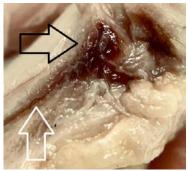


Рис. 5. Макрофото макро- и микротромбов в области сфинктера. Макротромб обозначен черной стрелкой, микротромб – белой стрелкой

При аутопсии женщины С. 75 лет с диагнозом рак верхневнутреннего квадранта левой молочной железы $T_4N_3M_1$ был эвисцерирован терминальный отдел грудного лимфатического протока. В ходе исследования была обнаружена закупорка тромбом одной из ветвей терминального отдела грудного лимфатического протока. Из истории болезни выяснилось, что пациентка страдала отеками левой верхней конечности и имела метастазы в брюшной полости, что вызывало повышение вязкости лимфы и нарушение работы лимфовенозного сфинктера (рис. 6).

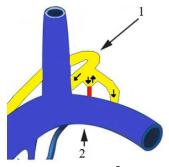


Рис. 6. Схематическая иллюстрация обструкции одного из ветвей терминального отдела грудного лимфатического протока: 1 – грудной проток; 2 – левая подключичная вена

Диаметр лимфатических сосудов, расположенных в ветвях терминального отдела грудного лимфатического протока, который был идентифицирован, варьировал от 0,8 мм (самый тонкий) до 2,5 мм (самый широкий). В самом тонком сосуде из-за недостаточной функции сфинктера и нарушения градиента давления между сосудами образовался тромб, что привело к обструкции, и в свою очередь вызвало нарушение лимфообращения и застойные явления.

Таким образом, исследование подтверждает, что при недостаточности сфинктера

происходит ретроградное поступление крови, содержащей тромбин и факторы свертывания, что в свою очередь приводит к образованию тромба в просвете лимфатического сосуда.

Заключение

Недостаточность сфинктерного аппарата лимфовенозного соустья приводит к ретроградному попаданию венозной крови вместе с факторами свертывания. Образовавшиеся тромбы в просвете лимфатического сосуда закупоривают просвет, что способствует нарушению лимфообращения, и сопровождается отеком и асцитом.

Сведения об авторах статьи:

Ганцев Камиль Шамилевич – д.м.н., профессор кафедры онкологии и клинической морфологии ФГБОУ ВО БГМУ Минздрава России. Адрес: 450008, г. Уфа, ул. Ленина, 3. E-mail: gantseff@mail.ru.

Файзализода Санои – ассистент кафедры онкологии и клинической морфологии ФГБОУ ВО БГМУ Минздрава России. Адрес: 450008, г. Уфа, ул. Ленина, 3. E-mail: sanoihirurg@gmail.com.

Кзыргалин Шамиль Римович – к.м.н., доцент кафедры онкологии и клинической морфологии ФГБОУ ВО БГМУ Минздрава России. E-mail: ufa.shamil@gmail.com.

Мансурова Алина Вячеславовна – ассистент кафедры онкологии и клинической морфологии ФГБОУ ВО БГМУ Минздрава России. Адрес: 450008, г. Уфа, ул. Ленина, 3. E-mail: alinkan804@mail.ru.

Ганцев Шамиль Ханяфиевич – д.м.н., профессор, академик АН РБ, зав. кафедрой онкологии и клинической морфологии ФГБОУ ВО БГМУ Минздрава России. Адрес: 450008, г. Уфа, ул. Ленина, 3. E-mail: gantsev.shamil@gmail.com.

ЛИТЕРАТУРА

- 1. Возможность применения мезенхимных стромальных клеток для восстановления лимфотока при экспериментальном флеботромбозе / Майбородин И.В. [и др.] // Клеточные технологии в биологии и медицине. 2015. № 4. С. 258-264.
- 2. Béguin S. The effect of trace amounts of tissue factor on thrombin generation in platelet rich plasma, its inhibition by heparin / S. Béguin, T. Lindhout, H.C. Hemker // Thromb Haemost. − 1989. − № 61(1). − C.25-9.
- 3. Physiology, Central Venous Pressure / P.Shah, M.A. Louis // Treasure Island (FL): StatPearls Publishing. 2024. PMID: 301377770
- 4. Способ эвисцерации терминального отдела грудного лимфатического протока на трупах: патент № 2024114115 Рос. Федерация; заявл. 24.05.2024; опубл. 19.11.2024. Бюл. №32.
- 5. Способ стадирования рака in vitro: патент Рос. Федерации № 2333776; заявл. 18.04.2007; опубл. 20.09.2008. Бюл. № 26.

REFERENCES

- 1. Maiborodin I.V. [et al.] The possibility of using mesenchymal stromal cells to restore lymph flow in experimental phlebothrombosis. Cellular technologies in biology and medicine. 2015;4:258-264. (In Russ)
- 2. Béguin, S., Lindhout T., Hemker H.C. The effect of trace amounts of tissue factor on thrombin generation in platelet rich plasma, its inhibition by heparin. Thromb Haemost. 1989. № 61(1);25-9.(in Engl)
- 3. Shah P., Louis M.A. Physiology, Central Venous Pressure / P.Shah, // Treasure Island (FL): StatPearls Publishing.2024. PMID: 30137777 (in Engl)
- 4. Sposob evistseratsii terminal'nogo otdela grudnogo limfaticheskogo protoka na trupakh (Method of evisceration of the terminal thoracic lymph duct on cadavers): patent № 2024114115 Ros. Federatsiya; zayavl. 24.05.2024; opubl. 19.11.2024. Byul. № 32.
- Sposob stadirovaniya raka in vitro (Method of cancer staging in vitro): patent Ros. Federatsii № 2333776; zayavl. 18.04.2007; opubl. 20.09.2008. Byul. № 26.