- Development of photodynamic therapy in treating oral diseases / L. Wang, Q. Chen, D. Liu // Front Oral Health. 2025. Vol. 5. P. 1506407. doi: 10.3389/froh.2024.1506407.
- 8. Oral tuberculosis / Y.H. Wu, J.Y. Chang, A. Sun, C.P. Chiang // J Formos Med Assoc. 2017. Vol. 116, № 1. P. 64-65. doi: 10.1016/j.jfma.2016.10.016.

REFERENCES

- 1. Casu C., Orrù G. Potential of photodynamic therapy in the management of infectious oral diseases. World J Exp Med. 2024;14(1):84284. (in Engl) doi: 10.5493/wjem.v14.i1.84284.
- 2. de Souza B.C., de Lemos V.M., Munerato M.C. Oral manifestation of tuberculosis: a case-report. Braz J Infect Dis. 2016;20(2):210-3. (in Engl) doi: 10.1016/j.bjid.2015.12.001.
- 3. Hu Q., Li T., Yang J. [et al.] Efficacy of photodynamic therapy in the treatment of oral candidiasis: a systematic review and meta-analysis. BMC Oral Health. 2023;23(1):802. (in Engl) doi: 10.1186/s12903-023-03484-z.
- Kozobkova N.V., Samtsov M.P., Lugovski A.P. [et al.] Photoinactivation of Mycobacterium tuberculosis and Mycobacterium smegmatis by Near-Infrared Radiation Using a Trehalose-Conjugated Heptamethine Cyanine. Int J Mol Sci. 2024;25(15):8505. (in Engl) doi: 10.3390/iims25158505.
- 5. Pai M., Behr M.A., Dowdy D. [et al.] Tuberculosis. Nat Rev Dis Primers. 2016;2:16076. (in Engl) doi: 10.1038/nrdp.2016.76.
- Sharma S., Bajpai J., Pathak P.K. [et al.] Oral tuberculosis Current concepts. J Family Med Prim Care. 2019;8(4):1308-1312. (in Engl) doi: 10.4103/jfmpc.jfmpc_97_19.
- Wang L., Chen Q., Liu D. Development of photodynamic therapy in treating oral diseases. Front Oral Health. 2025;5:1506407. (in Engl) doi: 10.3389/froh.2024.1506407.
- 8. Wu Y.H., Chang J.Y., Sun A., Chiang C.P. Oral tuberculosis. J Formos Med Assoc. 2017;116(1):64-65. (in Engl) doi: 10.1016/j.jfma.2016.10.016.

УДК 618.38 © М.Ю. Клявлина, 2025

М.Ю. Клявлина

ДИНАМИКА ИЗМЕНЕНИЙ МОРФОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ПУПОЧНОГО КАНАТИКА ПО РЕЗУЛЬТАТАМ ПОСТНАТАЛЬНЫХ ИССЛЕДОВАНИЙ

ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России, г. Уфа

Цель исследования: оценить характер и степень морфофункциональных изменений в структуре пупочного канатика по результатам постнатальных исследований, сравнить морфометрические показатели пуповины в антенатальном и постнатальном периодах.

Материал и методы. Объект исследования - пупочные канатики (n=150). Первоначально проводилась антенатальная морфометрия пуповины с помощью ультразвукового сканирования на аппарате Samsung Accuvix XG 2019. На последующем этапе использовались методы макро и микропрепарирования по В.П. Воробьеву. Из проксимального и срединного сегментов пуповины изготавливали коррозионные препараты, на основе которых в дальнейшем строили трехмерные компьютерные модели с помощью 3D сканера RangeVision Spectrum (Россия).

Результаты. Морфометрические показатели, полученные при ультразвуковом сканировании, статистически значимо превышают аналогичные параметры, зафиксированные в постнатальном периоде, полученные с использованием методов макро и микропрепарирования.

Выводы. В ранний послеродовый период пуповина претерпевает ряд морфометрических изменений, которые являются прямым следствием прекращения выполнения ее ключевых функций. Представленные нами диапазоны морфометрических показателей пупочного канатика демонстрируют значительную вариабельность, характерную для границ нормальной анатомической структуры.

Ключевые слова: морфология пуповины, сосуды пуповины, ультразвуковое исследование, макро и микропрепарирование, коррозионные препараты, трехмерное моделирование.

M.Yu. Klyavlina

DYNAMICS OF CHANGES IN MORPHOMETRIC PARAMETERS OF THE UMBILICAL CORD BASED ON THE RESULTS OF POST-NATAL STUDIES

The aim of the study: to assess the nature and extent of morphofunctional changes in the structure of the umbilical cord based on the results of postnatal studies, to compare morphometric parameters of the umbilical cord in the antenatal and postnatal periods.

Material and methods. The object of the study was the umbilical cords (n = 150). Initially, antenatal morphometry of the umbilical cord was carried out using ultrasound scanning on a Samsung Accuvix XG 2019 device. At the next stage, the macromicropreparation method according to V.P. Vorobyov was used. Corrosion preparations were made from the proximal and median segments of the umbilical cord, on the basis of which three-dimensional computer models were subsequently built using a RangeVision Spectrum 3D scanner (Russia).

Results. The morphometric parameters obtained by ultrasound scanning statistically significantly exceed similar parameters recorded in the postnatal period, obtained using macro-micropreparation methods.

Conclusions. In the early postpartum period, the umbilical cord undergoes a number of morphometric changes. They are a direct result of the cessation of its key functions. The ranges of morphometric parameters of the umbilical cord presented by us demonstrate significant variability, characteristic of the boundaries of the normal anatomical structure.

Key words: umbilical cord morphology, umbilical cord vessels, ultrasound examination, macro and micropreparation, corrosion preparations, three-dimensional modeling.

В структуре перинатальной смертности патология пупочного канатика является актуальной проблемой [1]. Пуповина представляет собой уникальную структуру, характеризующуюся динамичной сменой функциональной роли в перинатальном онтогенезе. В период внутриутробного развития пуповина выполняет критически важную функцию обеспечения газообмена, доставки питательных веществ и удаления продуктов метаболизма между организмами матери и развивающимся плодом [2]. Данная транспортная функция осуществляется посредством кровеносных сосудов, интегрированных в структуру пупочного канатика. После рождения он подвергается запрограммированной редукции, утрачивая свою первоначальную физиологическую значимость. Таким образом, пуповина является примером органа, специализированно адаптированного для выполнения витальных функций в период внутриутробного развития.

Большинство морфологических исследований пупочного канатика проведены в постнатальном периоде и направлены на выявление патологических изменений [3,4]. При этом, как известно, ткани после прекращения выполнения своей функции претерпевают ряд деструктивных изменений [2].

Объединение знаний о морфологических и функциональных особенностях пуповины, полученных в результате ее антенатального и постнатального изучения, может быть использовано для совершенствования акушерской тактики, улучшения мониторинга состояния плода во время беременности и родов, а также для разработки новых методов профилактики и лечения осложнений. Исследование пуповины актуально не только для акушерской практики, но и для разработки технологий регенеративной медицины. В частности, вартонов студень и кровь пупочной вены являются источником биологического материала для клеточной терапии [5,6]. В ряде публикаций подчеркивается терапевэффективность мезенхимальных стромальных клеток, полученных из пуповины, и их потенциальные преимущества перед другими источниками [5,7,8]. Для эффективного выделения мезенхимальных стволовых клеток (МСК) из пупочного канатика необходимы знания его анатомической структуры с акцентом на вартонов студень как на основной источник МСК. Процедура забора тканей для выделения МСК обычно проводится в постнатальном периоде, что обусловливает необходимость учета изменений, происходящих в раннем послеродовом периоде.

Цель исследования — оценить характер и степень морфофункциональных изменений в структуре пупочного канатика по результатам постнатальных исследований, сравнить морфометрические показатели пуповины в антенатальном и постнатальном периодах.

Материал и методы

Объект исследования - пупочные канатики (n=150). Критерии включения в исследование были следующие: доношенный гестационный возраст, роды через естественные родовые пути, протекающие без осложнений, отсутствие осложнений беременности и тяжелой соматической патологии. Критерием исключения из исследования послужил отказ пашиенток. Локальный этический комитет ФГБОУ ВО «Башкирского государственного медицинского университета» Минздрава России от 23.10.2024 заключил, что проводимое научное исследование соответствует общепринятым нормам морали, требованиям соблюдения прав, интересов и личного достоинства, принимающих участие в исследовании согласно «ГОСТ Р 52379-2005. Национальный стандарт Российской Федерации. Надлежащая клиническая практика». Забор биологического материала проводился с письменного согласия рожениц с дальнейшей транспортировкой в течение 12 часов в изотоническом растворе натрия хлорида.

С точки зрения методологии морфологического исследования выбранный нами объект – пупочный канатик – является уникальным. Исследователь имеет возможность проследить на одном и том же объекте морфофункциональные особенности как в функционирующем (антенатальном), так и нефункционирующем (постнатальном) состоянии.

В ходе данного исследования первоначально проводилась антенатальная морфометрия пуповины с помощью ультразвукового сканирования на аппарате Samsung Accuvix XG 2019. Далее выполнялся этап макромикропрепарирования пуповины по В.П. Воробьеву на кафедре анатомии человека ФГБОУ ВО «Башкирского государственного медицинского университета» Минздрава России. Замер морфометрических показателей на трех сегментах пуповины: окружность пуповины, внутренний диаметр пупочных сосудов, толщина сосудистых стенок- проводился в компьютерной программе ImageJ. Maccy пуповины, вартонова студня, пупочных сосудов фиксировали на лабораторных весах М-ег 122ACFJR-150.005 LCD. Длину пупочного канатика измеряли с помощь сантиметровой Из проксимального и срединного сегментов пуповины изготавливали коррозионные препараты, на основе которых в дальнейшем строили трехмерные компьютерные модели с помощью 3D сканера RangeVision Spectrum (Россия). Обработка данных проводилась в программе ScanCenter NG 2022. Редактирование полученной 3D модели выполнено с помощью программы для создания и

корректировки трехмерных моделей - Blender 4.2 LTS.

Статистическая обработка данных проводилась в программе Statistica 10.

Результаты

По результатам настоящего исследования зарегистрирована база данных: «Морфометрические показатели пуповины и ее сосудов доношенных новорожденных» [9].

Морфометрические показатели пупочного канатика (Me [Q5; Q95])

Таблица

Морфометрические показатели	Ультразвуковой	Макро-	Морфометрия коррозионных	Морфометрия трех- мерной компьютерной
	метод исследования	микропрепарирование	препаратов	модели
Длина пуповины, см	-	54,5 [40,6; 68,0]		-
Индекс извитости	-	0,17 [0; 0,3]	-	-
Масса пуповины, г	-	46 [29,1; 70,5]	-	-
Масса вартонова студня, г	-	33 [21; 51,5]	-	-
Масса артерий, г	-	7,0 [3,6; 12]	-	-
Масса вены, г	-	5,0 [2,0; 8,0]	-	-
Окружность пуповины в проксимальном сегменте, см	5,0 [4,2; 6,1]	4,0 [3,2; 5,1]	-	-
Окружность пуповины в срединном сегменте, см	4,8 [4,0; 6,0]	4,1 [3,3; 5,1]	-	-
Окружность пуповины в дистальном сегменте, см	4,7 [4,0; 5,6]	3,6 [3,3; 4,8]	-	-
Внутренний диаметр правой пупочной артерии в проксимальном сегменте, мм	4,4 [2,9; 5,5]	2,1 [1,2; 3,4]	4,4 [3,2; 5,0]	4,4 [3,2; 5,0]
Внутренний диаметр правой пупочной артерии в срединном сегменте, мм	4,3 [2,9; 5,5]	2,1 [1,2; 3,2]	4,3 [3,2; 5,0]	4,3 [3,2; 5,0]
Внугренний диаметр правой пупочной артерии в дистальном сегменте, мм	4,3 [2,9; 5,4]	2,1 [1,2; 3,2]	-	-
Внутренний диаметр левой пупочной артерии в проксимальном сегменте, мм	4,4 [2,9; 5,4]	2,2 [1,1; 3,2]	4,4 [3,2; 5,1]	4,4 [3,2; 5,1]
Внугренний диаметр левой пупочной артерии в срединном сегменте, мм	4,3 [2,9; 5,3]	2,1 [1,1; 3,2]	4,3 [3,2; 5,0]	4,3 [3,2; 5,0]
Внутренний диаметр левой пупочной артерии в дистальном сегменте, мм	4,2 [2,9; 5,3]	2,0 [1,1; 3,2]	-	-
Внугренний диаметр пупочной вены в проксимальном сегменте, мм	7,4 [6,3; 8,5]	4,5 [2,7; 7,6]	7,3 [6,4; 8,5]	7,3 [6,4; 8,5]
Внугренний диаметр пупочной вены в срединном сегменте, мм	7,4 [6,3; 8,5]	4,5 [2,7; 7,6]	7,3 [6,4; 8,5]	7,3 [6,4; 8,5]
Внутренний диаметр пупочной вены в дистальном сегменте, мм	7,4 [6,3; 8,5]	4,5 [2,6; 7,5]	-	-
Толщина стенки правой пупочной артерии в проксимальном сегменте, мм	-	0,5 [0,2; 0,9]	-	-
Толщина стенки правой пупочной артерии в срединном сегменте, мм	-	0,5 [0,2; 0,9]	-	-
Толщина стенки правой пупочной артерии в дистальном сегменте, мм	-	0,4 [0,2; 0,8]	-	-
Толщина стенки левой пупочной артерии в проксимальном сегменте, мм	-	0,5 [0,2; 0,8]	-	-
Толщина стенки левой пупочной артерии в срединном сегменте, мм	-	0,5 [0,3; 0,9]	-	-
Толщина стенки левой пупочной артерии в дистальном сегменте, мм	-	0,4 [0,2; 0,8]	-	-
Толщина стенки пупочной вены в проксимальном сегменте, мм	-	0,3 [0,1; 0,7]		-
Толщина стенки пупочной вены в срединном сегменте, мм	-	0,3 [0,1; 0,7]	-	-
Толщина стенки пупочной вены в дистальном сегменте, мм	-	0,3 [0,1; 0,6]		-

В таблице отражены морфометрические показатели пупочного канатика, полученные при помощи различных методов исследования в антенатальном и постнатальном периодах. Данная таблица подготовлена на основе указанной выше базы данных, которая включает в себя макроскопические, макро-микроскопи-

ческие и микроскопические параметры пуповины в целом и ее сосудистого русла.

По результатам нашего исследования, представленным в таблице, все пуповины имели нормальную длину -54,5 [40,6; 68,0] см. При этом индекс извитости претерпевал различные колебания -0,17 [0; 0,3] Согласно ста-

тистическому анализу, медианное значение индекса извитости пуповины отражало среднюю величину в исследуемой выборке. При этом, пуповины, характеризующиеся отсутствием спирализации или гипоизвитые, попадали в нижний пятый процентиль распределения. Напротив, пуповины с чрезмерной извитостью (гиперизвитые) относились к верхнему 95-ому процентилю распределения. Несмотря на экстремальные значения индекса извитости пуповины, течение родов не осложнялось. Число левозакрученных пуповин (75%) превысило число правозакрученных (19%). В нашем исследовании 5% пуповин не имели витков на протяжении длины, в 1% случаев ход витков менял свое направление.

Масса пуповины в основном зависела от количества эмбриональной слизистой соединительной ткани. По результатам нашего исследования масса вартонова студня в среднем превысила массу пупочных артерий в пять раз, а массу вены – семь раз.

Толщина сосудистой стенки правой и левой пупочных артерий по критерию Вилкоксона (p>0,05) не имела статистически значимых отличий. В то время как толщина сосудистой стенки пупочных артерий превышала толщину сосудистой стенки пупочной вены.

Согласно критерию Вилкоксона <0,05) морфометрические показатели, полученные при ультразвуковом сканировании, статистически значимо превышают аналогичные параметры, зафиксированные в постнатальном периоде, полученные с использованием методов макро-микропрепарирования. Наблюдаемые изменения не являются случайными. Они отражают закономерные процессы, происходящие в пуповине в раннем послеродовом периоде. В то же время, статистически значимых различий между параметрами, полученными с помощью ультразвуковых измерений, и аналогичными параметрами, измеренными на коррозионных препаратах и 3D-моделях, не выявлено. Заполнение сосудистого русла полимерным материалом в ходе изготовления коррозионных препаратов в постнатальном периоде, вероятно, является подобием предшествующего функционального полнокровия сосудов пуповины в антенатальном периоде. Из этого следует, что коррозионные препараты адекватны для создания точных 3D-моделей и соответствуют морфометрическим параметрам функционирующих сосудов пуповины.

Обсуждение

В процессе развития плаценты различают стадии дифференцирования, роста, зре-

лости и старения [2]. По-видимому, в силу тесной интеграции плаценты и пуповины в единый физиологический контур, процессы их морфофункциональных регрессивных изменений характеризуются параллелизмом. Регресс всего комплекса тканей пуповины в раннем послеродовом периоде происходит стремительно и приводит к значимому уменьшению морфометрических показателей по результатам макро-микропрепарирования по сравнению с данными ультразвукового исследования. В литературе также отмечается, что данные, полученные с помощью ультразвукового метода исследования несколько завышены, чем при патологоанатомическом исследовании [10]. Автор связывает это с функциональным полнокровием сосудов пуповины в прижизненном исследовании и с контракцией тканей после фиксации при патологоанатомическом исследовании [10].

К наиболее значимым параметрам, которые обеспечивают адекватное фетоплацентарное кровообращение относятся: длина пуповины, индекс извитости, диаметр пуповины и пупочных сосудов. Целый ряд публикаций посвящен длине пуповины. Патологически короткой пуповина считается при длине менее 40 см, а длинной более 50-90 см [11]. Полученные нами доверительные интервалы совпадают с вышеуказанными значениями (см. таблицу).

Особенностью анатомического строения сосудов пуповины является извитость их артерий. При этом две артерии обвиваются вокруг пупочной вены [12]. За норму принято считать 0,2 витка на 1 см или 1 виток на 5 см пуповины [11]. По результатам нашего исследования зафиксировано физиологическое течение беременности и родов через естественные родовые пути как с гипоизвитой, так и с гиперизвитой пуповиной. Очевидно, что нормальное количество вартонова студня в пуповине оказывает компенсаторное воздействие на аномальную извитость (гипо- или гиперизвитость) пупочного канатика. Как известно, вартонов студень защищает от механических и инфекционных поражений [13]. Следовательно, полученные нами доверительные интервалы диаметра пуповины и массы вартонова студня характеризуют нормальную вариантную анатомию данного провизорного органа (см. таблицу).

Значение диаметра пупочных сосудов и пуповины варьирует в различных литературных источниках [14,15]. Предположительно разброс данного морфометрического параметра связан с генетической предрасполо-

женностью и фенотипической изменчивостью каждого индивида. В литературе нам не встречались классификации и нормативные документы, которые устанавливают норму диаметра пупочных сосудов доношенных, здоровых новорожденных. Следовательно, полученные нами и другими авторами данные отображают границы вариантной анатомии пупочного канатика [9] и в будущем могут быть использованы для создания единой классификации.

Использование в анатомии различных методов исследования на одном и том же объекте, в нашем случае, пуповина, дает возможность расширения границ нормальных морфологических параметров. Исследование объекта при помощи ультразвукового сканирования дает возможность внедрения новых знаний в клиническую практику врача. Классические анатомические методы исследования (макро-микропрепарирование по В.П. Воробьеву) позволяют изучить те анатомические структуры, которые невозможно полноценно визуализировать во время ультразвуковой диагностики (масса вартонова студня, пупочных артерий и вены, толщина сосудистой стенки, длина пуповины на всем протяжении). Изготовление коррозионных препаратов позволяет построить точные трехмерные компьютерные модели, которые могут использоваться для проведения функциональных экспериментов, включая моделирование родовой деятельности.

Выводы

В ранний послеродовый период пуповина претерпевает ряд морфометрических изменений, которые характеризуются статистически значимыми различиями по сравнению с ее состоянием до родов и в период функционирования. Эти изменения являются прямым следствием прекращения выполнения пуповиной ее ключевых функций, включая газообмен, транспорт питательных веществ и выведение продуктов метаболизма.

Представленные нами диапазоны морфометрических показателей пупочного канатика демонстрируют значительную вариабельность, характерную для границ нормальной анатомической структуры.

Коррозионные препараты являются адекватным и достоверным материалом для построения трехмерных компьютерных моделей сосудов пуповины.

Сопоставимость морфометрических характеристик пуповины, полученных при витальном исследовании и с установленными посредством анализа трехмерных моделей, свидетельствует о высокой степени валидности использования компьютерных трехмерных моделей для проведения искусственных функциональных проб. Это подразумевает, что моделирование гемодинамических и других физиологических процессов, происходящих в пуповине, с использованием данных трехмерных моделей позволит достичь высокой степени приближения к *in vivo* условиям.

Сведения об авторе статьи:

Клявлина Мария Юрьевна – аспирант кафедры анатомии человека ФГБОУ ВО БГМУ Минздрава России. Адрес: 450008, г. Уфа, ул. Ленина 3. E-mail: Gradusova.maria@mail.ru.

ЛИТЕРАТУРА

- 1. Felicia, G. Vascular abnormalities of the umbilical cord / G. Felicia // Medicus. 2022. № 1(43). C. 6-13.
- 2. Надеев, А.П. Печень и плацента в пери- и постнатальный периоды при патологии: клинико-экспериментальное исследование / А.П. Надеев, В.А. Шкурупий, И.О. Маринкин. Новосибирск: Наука, 2014. С. 91-92.
- 3. Морфометрические параметры плаценты и пуповины при доношенной беременности / А.Л. Карпов [и др.] // Акушерство и гинекология. 2015. № 99. С. 123-128.
- 4. Попова, И.Г. Патоморфологические и биохимические особенности эндотелия сосудов пуповины при беременности, осложненной преэклампсией / И.Г. Попова, Е.В. Проценко, О.Г. Ситникова [и др.] // Проблемы репродукции. 2022. Т. 28, № 6. С. 44–52. DOI: 10.17116/герго20222806144
- 5. Davies, J.E. Concise Review: Wharton's Jelly: The Rich, but Enigmatic, Source of Mesenchymal Stromal Cells / J.E. Davies, J.T. Walker, A. Keating // Stem Cells Transl Med. 2017. Vol. 6, № 7. P. 1620-1630. DOI: 10.1002/sctm.16-0492.
- Bao, Y. Comparison of Different Culture Conditions for Mesenchymal Stem Cells from Human Umbilical Cord Wharton's Jelly for Stem Cell Therapy / Y. Bao, S. Huang, Z. Zhao // Turk J Haematol. – 2020. – Vol. 37, № 1. – P. 67-69. – DOI: 10.4274/tjh.galenos.2019.2019.0439.
- 7. Joerger-Messerli, M.S. Mesenchymal stem cells from Wharton's jelly and amniotic fluid / M.S. Joerger-Messerli, C. Marx, B. Oppliger [et al.] // Best Pract Res Clin Obstet Gynaecol. 2016. Vol. 31. P. 30–44.
- 8. Abbaszadeh, H. Regenerative potential of Wharton's jelly-derived mesenchymal stem cells: A new horizon of stem cell therapy / H. Abbaszadeh, F. Ghorbani, M. Derakhshani [et al.] // J Cell Physiol. − 2020. − Vol. 235, № 12. − P. 9230-9240. − DOI: 10.1002/jcp.29810.
- 9. Морфометрические показатели пуповины и ее сосудов доношенных новорожденных: свидетельство о государственной регистрации базы данных № 2025620664 Российская Федерация / М. Ю. Клявлина, Р. Т. Нигматуллин, Д. Ю. Рыбалко, А. В. Масленников; заявл. 27.01.2025, опубл. 10.02.2025.
- 10. Глуховец, И. Б. Органо- и гистометрические показатели пуповины в норме и при патологии беременности / И. Б. Глуховец // Архив патологии. 2010. Т. 72, № 6. С. 38-40.
- 11. Патологическое строение пуповины: что находится за рамками рутинного ультразвукового исследования при врожденном пороке сердца у плода / Т.А. Ярыгина [и др.] // Акушерство и гинекология. 2024. № 9. С. 12-21 https://dx.doi.org/10.18565/aig.2024.195.
- 12. Nikkels, P.G.J., Peres, L.C. Umbilical Cord Coiling: A Practical Guide. 2019. DOI:10.1007/978-3-319-97214-5_47.

- 13. Митрофанова, И. В. Варианты макромикроанатомии пуповины при беременности после экстракорпорального оплодотворения / И. В. Митрофанова, Е. Д. Луцай // Оренбургский медицинский вестник. 2023. Т. 11, № 3(43). С. 54-59.
- 14. Формирование и патология плаценты / Под ред. В.И.Краснопольского. М.: ОАО Издательство «Медицина», 2007. 112 с.
- 15. Alsatou, A. Clinico-morphological aspects and outcomes of the lean umbilical cord / Alsatou A, Petrovici V, Corolcova N. // Mold Med J. 2020. Vol. 63, № 2. P. 25-30. doi: 10.5281/ zenodo.3865990.

REFERENCES

- 1. Felicia G. Vascular abnormalities of the umbilical cord. Medicus. 2022;(1(43)):6-13. (in Engl)
- Nadeyev AP, Shkurupiy VA, Marinkin IO. Pechen' i platsenta v peri-i postnatal'nyy periody pri patologii: kliniko-eksperimental'noye
 issledovaniye (Liver and placenta in the peri- and postnatal periods in pathology: a clinical and experimental study). Novosibirsk: Nauka; 2014: 91-92. (in Russ)
- Karpov AL, Karpov NO, Mostovoy AV, Kondakova NN. Morphometric parameters of the placenta and umbilical cord in term pregnancy. Akusherstvo i ginekologiya [Obstetrics and Gynecology]. 2015;99:123-128. (in Russ)
- Popova IG, Protsenko YeV, Sitnikova OG, Nazarov SB, Kuz'menko GN, Kharlamova NV. Pathomorphological and biochemical features of the umbilical cord vessels endothelium in pregnancy complicated by preeclampsia. Problemy reproduktsii [Problems of Reproduction]. 2022;28(6):44–52. Available from: https://doi.org/10.17116/repro20222806144. (in Russ)
- 5. Davies JE, Walker JT, Keating A. Concise Review: Wharton's Jelly: The Rich, but Enigmatic, Source of Mesenchymal Stromal Cells. Stem Cells Transl Med. 2017 Jul;6(7):1620-1630. (in Engl) doi: 10.1002/sctm.16-0492.
- Bao Y, Huang S, Zhao Z. Comparison of Different Culture Conditions for Mesenchymal Stem Cells from Human Umbilical Cord Wharton's Jelly for Stem Cell Therapy. Turk J Haematol. 2020 Feb 20;37(1):67-69. (in Engl) doi: 10.4274/tjh.galenos.2019.2019.0439.
- 7. Joerger-Messerli MS, Marx C, Oppliger B, et al. Mesenchymal stem cells from Wharton's jelly and amniotic fluid. Best Pract Res Clin Obstet Gynaecol 2016; 31:30–44. (in Engl)
- Abbaszadeh H, Ghorbani F, Derakhshani M, Movassaghpour AA, Yousefi M, Talebi M, Shamsasenjan K. Regenerative potential of Wharton's jelly-derived mesenchymal stem cells: A new horizon of stem cell therapy. J Cell Physiol. 2020 Dec;235(12):9230-9240. doi: 10.1002/jcp.29810. (in Engl)
- 9. Klyavlina MYu, Nigmatullin RT, Rybalko DYu, Maslennikov AV. Svidetel'stvo o gosudarstvennoy registratsii bazy dannykh № 2025620664 Rossiyskaya Federatsiya. Morfometricheskiye pokazateli pupoviny i yeye sosudov donoshennykh novorozhdennykh. (Morphometric parameters of the umbilical cord and its vessels in full-term newborns: Certificate of state registration of database No. 2025620664 Russian Federation). Zayavl. 27.01.2025: opubl. 10.02.2025. (in Russ)
- 10. Glukhovets IB. Organo- i gistometricheskiye pokazateli pupoviny v norme i pri patologii beremennosti (*Organo- and histometric parameters of the umbilical cord in normal and pathological pregnancies*). Arkhiv patologii. 2010;72(6):38-40.
- 11. Yarygina TA, Gasanova RM, Marzoyeva OV, Sypchenko YeV, Leonova YeI, Lyapin VM, Shchegolev AI, Gus AI. Pathological structure of the umbilical cord: what is beyond routine ultrasound examination in congenital heart disease in the fetus. Akusherstvo i ginekologiya [Obstetrics and Gynecology] 2024; 9: 12-21. Available from: https://dx.doi.org/10.18565/aig.2024.195. (in Russ)
- 12. Peter GJ Nikkels, Luiz Cesar Peres. Umbilical Cord Coiling: A Practical Guide. 2019. DOI:10.1007/978-3-319-97214-5_47. (in Engl)
- 13. Mitrofanova IV, Lutsay YeD. Variants of macro-microanatomy of the umbilical cord in pregnancy after in vitro fertilization. Orenburgskiy meditsinskiy vestnik [Orenburg Medical Bulletin]. 2023;11(3(43)):54-59. (in Russ)
- 14. Krasnopol'skogo VI, editor. Formirovaniye i patologiya platsenty (Formation and pathology of the placenta). Moscow: OAO Izdatel'stvo «Meditsina»; 2007. (in Russ)
- Alsatou A, Petrovici V, Corolcova N. Clinico-morphological aspects and outcomes of the lean umbilical cord. Mold Med J. 2020;63(2):25-30. (in Engl) doi: 10.5281/zenodo.3865990.

УДК 616-01/09 © Коллектив авторов, 2025

Р.М. Файзуллина 1 , А.В. Санникова 1,2 , З.А. Шангареева 1 , А.Е. Чернышова 2 , Л.В. Зиякаев 1 , Л.А. Сафина 1

ТАБАКОКУРЕНИЕ, НИКОТИНОВАЯ ЗАВИСИМОСТЬ И КАЧЕСТВО ЖИЗНИ ПОДРОСТКОВ, ГОСПИТАЛИЗИРОВАННЫХ В ПЕДИАТРИЧЕСКИЙ СТАЦИОНАР ПО ПОВОДУ СОМАТИЧЕСКИХ ЗАБОЛЕВАНИЙ

¹ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России, г. Уфа ²ГБУЗ РБ «Городская детская клиническая больница №17», г. Уфа

Целью исследования было выявление табакокурения и степени никотиновой зависимости среди подростков исследуемой группы и опенка их качества жизни.

Материал и методы. Проведено исследование никотинового статуса у 64 подростков в возрасте 12 – 17 лет методами анкетирования и определения котинина в моче. Степень никотиновой зависимости определялась с помощью теста Фагерстрема. Качество жизни подростков оценивалось с использованием опросника «SF-36».

Результаты. По результатам исследования более 53% подростков пробуют курить, 4/5 из них становятся курильщиками. Средний возраст начала курения — 12,5 года. Более 20% курящих подростков курят ежедневно. У 91% подростков слабая никотиновая зависимость. У курящих подростков отмечены низкие показатели физического и ролевого функционирования, общего здоровья, социального и эмоционально-волевого функционирования. Низкий показатель общего физического компонента здоровья отражает низкую субъективную оценку общего состояния здоровья курящих подростков, приобщенных к табакокурению (p=0,009).

Заключение. Полученные нами данные свидетельствуют о необходимости дальнейшего изучения проблемы табакокурения среди детей и подростков.

Ключевые слова: табакокурение, подростки, анкетирование, котинин, никотиновая зависимость, качество жизни.