Preview

Bashkortostan Medical Journal

Advanced search

DIAGNOSIS OF AGE-RELATED MACULAR DEGENERATION USING ARTIFICIAL INTELLIGENCE

Abstract

Age-related macular degeneration is a socially significant disease that threatens human vision. The main diagnostic method of this disease is optical coherence tomography. Due to the increase in morbidity, the load on the ophthalmologist is increasing. This review presents the latest developments in the implementation of artificial intelligence in the diagnosis of age-related macular degeneration.

About the Authors

R. R. Ibragimova
АО «Оптимедсервис»
Russian Federation


E. A. Lopukhova
ФГБОУ ВО «Уфимский университет науки и технологий»
Russian Federation


R. V. Kutluyarov
ФГБОУ ВО «Уфимский университет науки и технологий»
Russian Federation


G. M. Idrisova
ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России; АО «Оптимедсервис»
Russian Federation


R. T. Mukhamadeeva
ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Russian Federation


References

1. Stark K, Olden M, Brandl C, Dietl A. [et al.] The German AugUR study: study protocol of a prospective study to investigate chronic diseases in the elderly. BMC geriatrics. 2015;(15):1-8. (In Engl)

2. de Guimaraes TAC, Varela MD, Georgiou M. [et al.] Treatments for dry age-related macular degeneration: therapeutic avenues, clinical trials and future directions. British Journal of Ophthalmology. 2022;106(3):297-304. (In Engl)

3. Libman SA. Slepota i invalidnost` vsledstvie patologii v Rossii Oftal`mologiya. Nacional`noe rukovodstvo (Blindness and disability due to pathology in Russia // Ophthalmology. National leadership). M.:2008:19-31. (In Russ).

4. Wang JJ, Rochtchina E, Chia EM. [et al.] Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study. Ophthalmology. 2007;114(1):92-98. (In Engl)

5. Ambati J, Ambati BK. Age-related eye disease study caveats. Archives of Ophthalmology. 2002;120(7):997-997. (In Engl)

6. Reynders S, Lafaut B, Aisenbrey S. [et al.] Clinicopathologic correlation in hemorrhagic age-related macular degeneration. Graefe's archive for clinical and experimental ophthalmology. 2002;(240):279-285. (In Engl)

7. Aznabaev BM., Mukhamadeev T.R., Dibav T.I. Opticheskaya kogerentnaya tomografiya + angiografiya glaza v diagnostike, terapii i hirurgii glaznyh boleznej (Optical coherence tomography + angiography of the eye in the diagnosis, therapy and surgery of eye diseases). M.: Avgust Borg. 2019;352. (In Russ)

8. Singareddy S, Sn VP, Jaramillo AP. [et al.] Artificial Intelligence and Its Role in the Management of Chronic Medical Conditions: A Systematic Review. Cureus. 2023;(15):9. (In Engl)

9. Borrelli E, Oakley JD, Iaccarino G. [et al.] Deep-learning based automated quantification of critical optical coherence tomography features in neovascular age-related macular degeneration. Eye. 2024;38(3):537-544. (In Engl)

10. Kapoor R, Whigham BT, Al-Aswad LA. Artificial intelligence and optical coherence tomography imaging. The Asia-Pacific Journal of Ophthalmology. 2019;8(2):187-194. (In Engl)

11. Olabanjo O, Wusu A, Asokere M. [et al.] Application of Machine Learning and Deep Learning Models in Prostate Cancer Diagnosis Using Medical Images: A Systematic Review. Analytics. 2023;2(3):708-744. (In Engl)

12. Treder M, Lauermann JL, Eter N. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning. Graefe's Archive for Clinical and Experimental Ophthalmology. 2018;256(2):259-265. (In Engl)

13. Venhuizen FG, van Ginneken B, van Asten F. [et al.] Automated staging of age-related macular degeneration using optical coherence tomography. Investigative ophthalmology & visual science. 2017;58(4):2318-2328. (In Engl)

14. Tvenning AO, Hanssen SR, Austeng D. [et al.] Deep learning identify retinal nerve fibre and choroid layers as markers of age related macular degeneration in the classification of macular spectral domain optical coherence tomography volumes. Acta Ophthalmologica. 2022;100(8):937-945. (In Engl)

15. Yan Y, Jin K, Gao Z. [et al.] Attention based deep learning system for automated diagnoses of age‐related macular degeneration in optical coherence tomography images. Medical Physics. 2021;8(9):4926-4934. (In Engl)

16. Khan A, Pin K, Aziz A. [et al.] Optical coherence tomography image classification using hybrid deep learning and ant colony optimization. Sensors. 2023;23(15):6706. (In Engl)

17. Holz FG, Abreu-Gonzalez R, Bandello F. [et al.] Does real-time artificial intelligence-based visual pathology enhancement of threedimensional optical coherence tomography scans optimise treatment decision in patients with nAMD? Rationale and design of the RAZORBILL study. British Journal of Ophthalmology. 2023;107(1):96-101. doi: 10.1136/bjophthalmol-2021-319211. (In Engl)

18. Han J, Choi S, Park JI. [et al.] Classifying neovascular age-related macular degeneration with a deep convolutional neural network based on optical coherence tomography images. Scientific Reports. 2022;12(1): 1-10. (In Engl)

19. Opoku M, Weyori BA, Adebayo FA. [et al.] SFFT-CapsNet: Stacked Fast Fourier Transform for Retina Optical Coherence Tomography Image Classification using Capsule Network. International Journal of Advanced Computer Science and Applications. 2023;14(9). (In Engl) http://dx.doi.org/10.14569/IJACSA.2023.0140932

20. Kamenskikh T.G., Dolinina O.N., Kolbenev I.O., Veselova E.V. An intelligent decision-making system for early diagnosis of macular pathology. Russian Ophthalmological Journal. 2022;15(2):69-74. (In Russ.) https://doi.org/10.21516/2072-0076-2022-15-2-supplement-69-74

21. Katalevskaya E.A., Sizov A.Yu., Gilemzianova L.I. Artificial intelligence algorithm for segmentation of pathological structures on optical coherence tomography scans. Russian Journal of Telemedicine and E-Health 2022;8(3)21-27; (in Russ) https://doi.org/10.29188/2712-9217-2022-8-3-21-27

22. Malyugin BE, Sakhnov CN, Aksenova LE. [et al.] A deep machine learning model development for the biomarkers of the anatomical and functional anti-VEGF therapy outcome detection on retinal OCT images. Fyodorov journal of ophthalmic surgery. 2022;(4s.):77-84. (In Russ)

23. Neroev V.V., Bragin A.A., Zaytseva O.V. Diagnostics of retinal pathologies by optical coherence tomography images using artificial intelligence tools. Russian Ophthalmological Journal. 2023;16(3):47-53. (In Russ.) https://doi.org/10.21516/2072-0076-2023-16-3-47-53

24. Chuprov AD, Bolodurina IP, Lositskii AO. [et al.] Progression signs of retinal disease used to increase the validity of an artificial intelligence-based medical decision support system. Sovremennye tekhnologii v oftal'mologii. 2023;(5):88. (In Russ)

25. Bhatia KK, Graham MS, Terry L. [et al.] Disease classification of macular optical coherence tomography scans using deep learning software: validation on independent, multicenter data. Retina. 2020;40(8):1549-1557. (In Engl)

26. Kuwayama S, Ayatsuka Y, Yanagisono D. [et al.] Automated Detection of Macular Diseases by Optical Coherence Tomography and Artificial Intelligence Machine Learning of Optical Coherence Tomography Images. J Ophthalmol. 2019;(2019):6319581. doi: 10.1155/2019/6319581.(In Engl)

27. Sunija AP, Kar S, Gayathri S. [et al.] Octnet: A lightweight cnn for retinal disease classification from optical coherence tomography images. Computer methods and programs in biomedicine.2021;(200):105877. (In Engl)

28. Seeböck P, Waldstein SM, Klmscha S. [et al.] Unsupervised identification of disease marker candidates in retinal OCT imaging data. IEEE transactions on medical imaging. 2018;38(4):037-1047. (In Engl)

29. Upadhyay PK, Rastogi S, Kumar KV. Coherent convolution neural network based retinal disease detection using optical coherence tomographic images. Journal of King Saud University-Computer and Information Sciences. 2022;34(10):9688-9695. (In Engl)

30. Rim TH, Lee AY, Ting DS. [et al.] Detection of features associated with neovascular age-related macular degeneration in ethnically distinct data sets by an optical coherence tomography: trained deep learning algorithm. British Journal of Ophthalmology. 2021;105(8):1133-1139. (In Engl)

31. Schmidt-Erfurth U, Waldstein SM, Klimscha S [et al.] Prediction of individual disease conversion in early AMD using artificial intelligence. Investigative ophthalmology & visual science. 2018;59(8):3199-3208. (In Engl)

32. Waldstein SM, Vogl WD, Bogunovic H. [et al.] Characterization of drusen and hyperreflective foci as biomarkers for disease progression in age-related macular degeneration using artificial intelligence in optical coherence tomography. JAMA ophthalmology. 2020;138(7):740-747. (In Engl)

33. Bogunović H, Montuoro A, Baratsits M. [et al.] Machine learning of the progression of intermediate age-related macular degeneration based on OCT imaging. Investigative ophthalmology & visual science. 2017;58(6):BIO141-BIO150. (In Engl)

34. Sarici K, Abraham JR, Sevgi DD. [et al.] Risk Classification for Progression to Subfoveal Geographic Atrophy in Dry Age-Related Macular Degeneration Using Machine Learning–Enabled Outer Retinal Feature Extraction. Ophthalmic Surgery, Lasers and Imaging Retina. 2022;53(1):31-39. (In Engl)

35. Zhang G, Fu DJ, Liefers B. [et al.] Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study. The Lancet Digital Health. 2021;3(10):e665-e675. (In Engl)

36. Thakoor KA, Yao J, Bordbar D. [et al.] A multimodal deep learning system to distinguish late stages of AMD and to compare expert vs. AI ocular biomarkers //Scientific reports. 2022;12(1):1-11. (In Engl)

37. Yoo TK, Choi JY, Seo JG. [et al.] The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment. Medical & biological engineering & computing. 2019;57(3):677-687. (In Engl)

38. Prahs P, Radeck V, Mayer C. [et al.] OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications. Graefe's Archive for Clinical and Experimental Ophthalmology. 2018;256(1):91-98. (In Engl)

39. Zhao X, Zhang X, Lv B. [et al.] Optical coherence tomography-based short-term effect prediction of anti-vascular endothelial growth factor treatment in neovascular age-related macular degeneration using sensitive structure guided network. Graefe's Archive for Clinical and Experimental Ophthalmology. 2021;259(11):3261-3269. (In Engl)

40. Keenan TDL, Clemons TE, Domalpally A. [et al.] Retinal specialist versus artificial intelligence detection of retinal fluid from OCT: age-related eye disease study 2: 10-year follow-on study. Ophthalmology. 2021;128(1):100-109. (In Engl)

41. Maloca PM, Lee AY,de Cavalho ER. [et al.] Validation of automated artificial intelligence segmentation of optical coherence tomography images. PloS one. 2019;14(8):e0220063. (In Engl)


Review

For citations:


Ibragimova R.R., Lopukhova E.A., Kutluyarov R.V., Idrisova G.M., Mukhamadeeva R.T. DIAGNOSIS OF AGE-RELATED MACULAR DEGENERATION USING ARTIFICIAL INTELLIGENCE. Bashkortostan Medical Journal. 2024;19(3):92-97. (In Russ.)

Views: 50


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-6209 (Print)