Preview

Медицинский вестник Башкортостана

Расширенный поиск

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ВИДОВ 3D-БИОПЕЧАТИ И ВОЗМОЖНОСТИ ИХ ПРИМЕНЕНИЯ В КЛИНИЧЕСКОЙ ПРАКТИКЕ

Аннотация

Дефицит тканей и органов является серьезной медицинской проблемой. Трехмерная биопечать представляет собой мультидисциплинарную технологию для проектирования трехмерных биологических тканей со сложной архитектурой и составом. Данная технология является многообещающей благодаря точному нанесению клеток пациента или донора в соконструктов для тканевой инжнерии и регенеративной медицины. Весьма привлекательным для применения в клинической практике является появление технологии in-situ биопечати. Например, данная технология представляет собой прямую печать в месте дефекта, что значительно повышает возможности ее использования в регенеративной медицине.
Цель данного обзора – провести сравнительную характеристику основных и новых стратегий 3D-биопечати. Проведён анализ публикаций и исследований, находящихся в открытом доступе, отражающем основные результаты научных работ за последние 20 лет. По результатам проведенного анализа представлены основные типы биопечати, их достоинства и недостатки, возможности их применения для создания конструктов для тканевой инженерии и регенеративной медицины.

Об авторах

А. И. Файрушина
Институт фундаментальной медицины ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Россия

Файрушина Аделия Ильдаровна – м.н.с. лаборатории биопринтинга Института фундаментальной медицины

450008, г. Уфа, ул. Ленина, 3



Р. А. Заманова
Институт фундаментальной медицины ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Россия

Заманова Розалия Артуровна – м.н.с. лаборатории биопринтинга Института фундаментальной медицины

450008, г. Уфа, ул. Ленина, 3



Н. И. Абдуллина
Институт фундаментальной медицины ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Россия

Абдуллина Нурия Ильдаровна – лаборант лаборатории биопринтинга Института фундаментальной медицины

450008, г. Уфа, ул. Ленина, 3



Д. З. Махьянов
Институт фундаментальной медицины ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Россия

Махьянов Динар Забирович – лаборант-исследователь лаборатории биопринтинга Института фундаментальной медицины

450008, г. Уфа, ул. Ленина, 3

 



Р. Ш. Иванова
Институт фундаментальной медицины ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Россия

Иванова Расима Шамиловна – магистрант первого года обучения по направлению Биология

450008, г. Уфа, ул. Ленина



С. В. Пятницкая
Институт фундаментальной медицины ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Россия

Пятницкая Светлана Викторовна – заведующий лабораторией биопринтинга Института фундаментальной медицины

450008, г. Уфа, ул. Ленина, 3



Список литературы

1. Three-Dimensional Bioprinting: A Comprehensive Review for Applications in Tissue Engineering and Regenerative Medicine / N. A. Mirsky [et al.] // Bioengineering (Basel). – 2024. – Vol. 11. – No. 8. – P. 777. – DOI: 10.3390/bioengineering11080777.

2. Klebe, R. J. Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues / R. J. Klebe // Exp. Cell Res. – 1988. – Vol. 179. – No. 2. – P. 362–373. – DOI: 10.1016/0014-4827(88)90275-3.

3. Odde, D. J. Laser-guided direct writing for applications in biotechnology / Odde D. J., Renn M. J. // Trends Biotechnol. – 1999. – Vol. 17. – No. 10. – P. 385–389. – DOI: 10.1016/s0167-7799(99)01355-4.

4. Bioinks adapted for in situ bioprinting scenarios of defect sites: a review / Li R. [et al.]// RSC Adv. – 2023. – Vol. 13. – No. 11. – P. 7153–7167.

5. A review on cell damage, viability, and functionality during 3D bioprinting / Xu H. Q. [et al.] // Mil.Med. Res. – 2022. – Vol. 9. – No. 1. – P. 70.

6. An Introduction to 3D Bioprinting: Possibilities, Challenges and Future Aspects / Kačarević Ž. P. [et al.] // Materials (Basel). – 2018. – Vol. 11. – No. 11. – P. 2199. – DOI: 10.3390/ma11112199.

7. Godar, D. E. 3D Bioprinting with UVA1 Radiation and Photoinitiator Irgacure 2959: Can the ASTM Standard L929 Cells Predict Human Stem Cell Cytotoxicity? / Godar D. E., Gurunathan C., Ilev I. // Photochem. Photobiol. – 2019. – Vol. 95. – No. 2. – P. 581–586.

8. Nakamura, M. 3D micro-fabrication by inkjet 3D biofabrication for 3D tissue engineering / Nakamura M., Nishiyama Y., Henmi C. // In: 2008 International Symposium on Micro-NanoMechatronics and Human Science; 2008; Nagoya, Japan. Piscataway (NJ): IEEE; 2008. – P. 451–456.

9. Inkjet Bioprinting of Biomaterials / Li X. [et al.]// Chem. Rev. – 2020. – Vol. 120. – No. 19. – P. 10793–10833

10. 3D bioprinting of microorganisms: principles and applications / Herzog J. [et al.] // Bioprocess Biosyst Eng. – 2024. – Vol. 47. – No. 4. – P. 443-461.

11. Wilson, W. C. Jr. Cell and organ printing 1: protein and cell printers / Wilson W. C. Jr, Boland T. // Anat. Rec. A Discov. Mol. Cell Evol. Biol. – 2003. – Vol. 272. – No. 2. – P. 491-496. – DOI: 10.1002/ar.a.10057.

12. Scaffolds for tissue engineering produced by inkjet printing / Zhang Y. [et al.] // Open Eng. – 2012. – Vol. 2. – No. 3. – P. 325-335. –

13. Effective bioprinting resolution in tissue model fabrication / Miri A. K. [et al.] // Lab Chip. – 2019. – Vol. 19. – No. 11. – P. 2019-2037.

14. Inkjet and inkjet-based 3D printing: connecting fluid properties and printing performance / Guo Y. [et al.]// Rapid Prototyping J. – 2017. – Vol. 23. – No. 3. – P. 562-576. – DOI: 10.1108/RPJ-05-2016-0076.

15. Tetsuka, H. Materials and technical innovations in 3D printing in biomedical applications / Tetsuka H., Shin S.R. // J. Mater. Chem. B. – 2020. – Vol. 8. – No. 11. – P. 2311-2334. – DOI: 10.1039/c9tb02871k.

16. In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds / Albanna M. [et al.] // Sci Rep. – 2019. – Т. 9. – № 1. – С. 1856. – doi: 10.1038/s41598-018-38366-w.

17. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration / Inzana J. A. [et al.] // Biomaterials. – 2014. – Т. 35. – № 13. – С. 4026-4034. – doi: 10.1016/j.biomaterials.2014.01.064.

18. Direct human cartilage repair using three-dimensional bioprinting technology / Cui X. [et al.] // Tissue Eng. Part A. – 2012. – Vol. 18. – No. 11-12. – P. 1304-1312. – DOI: 10.1089/ten.TEA.2011.0543.

19. Fabrication and characterization of bio-engineered cardiac pseudo tissues / Xu T. [et al.] // Biofabrication. – 2009. – Т. 1. – № 3. – С. 035001. – doi: 10.1088/1758-5082/1/3/035001.

20. Application of a 3D bioprinter: jet technology for 'biopatch' development using cells on hydrogel supports / DeMel D. C. [et al.] // Biotechniques. – 2024. – Т. 76. – № 2. – С. 52-62. – doi: 10.2144/btn-2023-0052.

21. Advancements of 3D bioprinting in regenerative medicine: Exploring cell sources for organ fabrication / Ma Y. [et al.] // Heliyon. – 2024. – Т. 10, № 3. – e24593. – doi: 10.1016/j.heliyon.2024.e24593.

22. Bioinks and biofabrication techniques for biosensors development: A review / Byrne R. [et al.] // Mater Today Bio. – 2024. – Т. 28. – 101185. – doi: 10.1016/j.mtbio.2024.101185.

23. DNA deposition through laser induced forward transfer / Colina M. [et al.]// Biosens Bioelectron. – 2005. – Т. 20. – № 8. – С. 1638- 1642. – doi: 10.1016/j.bios.2004.08.047.

24. Bohandy, J. Metal deposition from a supported metal film using an excimer laser / Bohandy J., Kim B. F., Adrian F. J. // J Appl Phys. – 1986. – Т. 60. – № 4. – С. 1538-1539. – https://doi.org/10.1063/1.337287.

25. Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns / Barron J. A. [et al.] // Biomed Microdevices. – 2004. – Vol. 6. – No. 2. – P. 139-147. https://doi.org/10.1023/b:bmmd.0000031751.67267.9f.

26. Application of laser printing to mammalian cells / Barron J. A. [et al.]// Thin Solid Films. – 2004. – Vol. 453. – P. 383-387. https://doi.org/10.1016/J.TSF.2003.11.161.

27. Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling / Mézel C. [et al.] // Biofabrication. – 2010. – Vol. 2. – No. 1. – P. 014103. https://doi.org/10.1088/1758-5082/2/1/014103.

28. Freeform drop-on-demand laser printing of 3D alginate and cellular constructs / Xiong R. [et al.] // Biofabrication. – 2015. – Vol. 7. – No. 4. – P. 045011. https://doi.org/10.1088/1758-5090/7/4/045011.

29. Recent Advances in Bioprinting Techniques: Approaches, Applications and Future Prospects / Li J. [et al.] // J Transl Med. – 2016. – Vol. 14. – P. 1-15. https://doi.org/10.1186/s12967-016-1028-0.

30. Bioinks for 3D Bioprinting: A Scientometric Analysis of Two Decades of Progress / Pedroza-González S. C. [et al.] // Int J Bioprint. – 2021. – Vol. 7. – No. 2. – P. 333. https://doi.org/10.18063/ijb.v7i2.337.

31. Study of gelatin as an effective energy absorbing layer for laser bioprinting / Xiong R. [et al.] // Biofabrication. – 2017. – Vol. 9. – No. 2. – P. 024103. https://doi.org/10.1088/1758-5090/aa74f2.

32. Laser Bioprinting of Cells Using UV and Visible Wavelengths: A Comparative DNA Damage Study / Karakaidos P. [et al.] // Bioengineering (Basel). – 2022. – Vol. 9. – No. 8. – P. 378. https://doi.org/10.3390/bioengineering9080378.

33. Laser-assisted bioprinting of targeted cartilaginous spheroids for high density bottom-up tissue engineering / Hall GN. [et al.] // Biofabrication. – 2024. – Т. 16. – №. 4. – С. 045011. – DOI: 10.1088/1758-5090/ad6e1a.

34. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice / Michael S. [et al.] // PLoS One. – 2013. – Т. 8. – №. 3. – С. e57741. – DOI: 10.1371/journal.pone.0057741.

35. Freeform drop-on-demand laser printing of 3D alginate and cellular constructs / Xiong R. [et al.]// Biofabrication. – 2015. – Т. 7. – №. 4. – С. 045011. – DOI: 10.1088/1758-5090/7/4/045011.

36. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite / Catros S. [et al.] // Biofabrication. – 2011. – Т. 3. – №. 2. – С. 025001. – DOI: 10.1088/1758-5082/3/2/025001.

37. Chang, J. Laser-induced forward transfer based laser bioprinting in biomedical applications / Chang J, Sun X. // Front Bioeng Biotechnol. – 2023. – Т. 11. – С. 1255782. – DOI: 10.3389/fbioe.2023.1255782.

38. Zennifer, A. Design considerations of bioinks for laser bioprinting technique towards tissue regenerative applications / Zennifer A, Subramanian A, Sethuraman S. // Bioprinting. – 2022. – Т. 27. – С. e00205. – DOI: 10.1016/j.bprint.2022.e00205.

39. Budharaju, H. Embedded 3D bioprinting: An emerging strategy to fabricate biomimetic & large vascularized tissue constructs / Budharaju H., Sundaramurthi D., Sethuraman S. // Bioact. Mater. – 2023. – Т. 32. – С. 356-384. https://doi.org/10.1016/j.bioactmat.2023.10.012.

40. Advances in extrusion 3D bioprinting: A focus on multicomponent hydrogel-based bioinks / Cui X. [et al.] // Adv. Healthc. Mater. – 2020. – Т. 9. – № 15. – С. e1901648. https://doi.org/10.1002/adhm.201901648.

41. 3D extrusion bioprinting / Zhang Y.S. [et al.] // Nat. Rev. Methods Primers. – 2021. – Т. 1. – С. 75. https://doi.org/10.1038/s43586-021-00073-8.

42. Emerging technologies in multi-material bioprinting / Ravanbakhsh H. [et al.] // Adv. Mater. – 2021. – Т. 33. – № 49. – С. e2104730. https://doi.org/10.1002/adma.202104730.

43. 3D bioprinting for engineering complex tissues / Mandrycky C. [et al.] // Biotechnol. Adv. – 2016. – Т. 34. – № 4. – С. 422-434. https://doi.org/10.1016/j.biotechadv.2015.12.011.

44. 3D bioprinting and its innovative approach for biomedical applications / Tripathi S. [et al.] // MedComm. – 2022. – Т. 4. – № 1. https://doi.org/10.1002/mco2.194.

45. Perez-Valle A. Overview of Current Advances in Extrusion Bioprinting for Skin Applications / Perez-Valle A, Del Amo C, Andia I. // Int J Mol Sci. – 2020 – T. 21 – №18 – С. 6679. doi: 10.3390/ijms21186679

46. In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits / F. Dolati [et al.] // Nanotechnology. – 2014. – Vol. 25, № 14.

47. Nedrelow, D.S. Osteochondral Regeneration With Anatomical Scaffold 3D-Printing-Design Considerations for Interface Integration / D.S. Nedrelow, J.M. Townsend, M.S. Detamore // J Biomed Mater Res A. – 2024. – P. 1-17.

48. You, F. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering / F. You, B.F. Eames, X. Chen // Int J Mol Sci. – 2017. – Vol.18, №7.

49. A novel extrusion-based 3D bioprinting system for skeletal muscle tissue engineering / E. Fornetti [et al.] // Biofabrication. – 2023. – Vol. 15, № 2.

50. Three-dimensional bioprinting of artificial ovaries by an extrusion-based method using gelatin-methacryloyl bioink / T. Wu [et al.] // Climacteric. – 2022. – Vol. 25, № 2. – P.170-178.

51. Extrusion bioprinting of hydroxyethylcellulose-based bioink for cervical tumor model / A. Gospodinova [et al.] // Carbohydr Polym. – 2021. – Vol. 260.

52. Acoustofluidics for cell patterning and tissue engineering / Wu Z. [et al.] // Eng. Regen. – 2022. – Т. 3, № 4. – С. 397-406. https://doi.org/10.1016/j.engreg.2022.08.005.

53. Capillary wave tweezer / Orme B. [et al.] // Sci. Rep. – 2024. – Т. 14. – № 1. – С. 12448. https://doi.org/10.1038/s41598-024-63154-0.

54. Mierke, C.T. Bioprinting of cells, organoids, and organs-on-a-chip together with hydrogels improves structural and mechanical cues / Mierke C.T. // Cells. – 2024. – Т. 13, № 19. – С. 1638. https://doi.org/10.3390/cells13191638.

55. A bio-acoustic levitational (BAL) assembly method for engineering of multilayered, 3D brain-like constructs, using human embryonic stem cell derived neuro-progenitors / Bouyer C. [et al.] // Adv. Mater. – 2016. – Т. 28. – № 1. – С. 161-167. https://doi.org/10.1002/adma.201503916.

56. Engineering anisotropic muscle tissue using acoustic cell patterning / Armstrong J.P.K. [et al.] // Adv. Mater. – 2018. – Т. 30. – № 43. – С. e1802649. https://doi.org/10.1002/adma.201802649.

57. Bioacoustic-enabled patterning of human iPSC-derived cardiomyocytes into 3D cardiac tissue / Serpooshan V. [et al.] // Biomaterials. – 2017. – Т. 131. – С. 47-57. https://doi.org/10.1016/j.biomaterials.2017.03.037.

58. Biofabrication of a functional tubular construct from tissue spheroids using magnetoacoustic levitational directed assembly / Parfenov V.A. [et al.] // Adv. Healthc. Mater. – 2020. – Т. 9. – № 24. – С. e2000721. https://doi.org/10.1002/adhm.202000721.

59. Incorporation of conductive materials into hydrogels for tissue engineering applications / Chansoria P. [et al.] // Polymers (Basel). – 2018. – Т. 10. – № 10. – С. 1078. https://doi.org/10.3390/polym10101078.

60. Acoustic bioprinting of patient-derived organoids for predicting cancer therapy responses/ Chen H. [et al.] // Adv. Healthc. Mater. – 2022. – Т. 11. – № 13. – С. e2102784. https://doi.org/10.1002/adhm.202102784.

61. Three-dimensional manipulation of single cells using surface acoustic waves / Guo F. [et al.] // Proc. Natl. Acad. Sci. U.S.A. – 2016. – Т. 113. – No 6.– С. 1522-1527. https://doi.org/10.1073/pnas.1524813113.

62. Progress in bioprinting technology for tissue regeneration / Sabzevari A. [et al.] // J. Artif. Organs. – 2023. – Т. 26. – № 4. – С. 255-274.

63. In situ 3D label-free contactless bioprinting of cells through diamagnetophoresis / Abdel Fattah A. R. [et al.] // ACS Biomater. Sci. Eng. – 2016. – Dec 12. – Vol. 2. – № 12. – P. 2133-2138. https://doi.org/10.1021/acsbiomaterials.6b00614.

64. A spheroid toxicity assay using magnetic 3D bioprinting and real-time mobile device-based imaging / Tseng H. [et al.] // Sci. Rep. – 2015. – Sep 14. – Vol. 5. – P. 13987. https://doi.org/10.1038/srep13987.

65. 3D cellular structures and co-cultures formed through the contactless magnetic manipulation of cells on adherent surfaces / Abdel Fattah A. R. [et al.] // Biomater. Sci. – 2018. – Feb 27. – Vol. 6. – № 3. – P. 683-694. https://doi.org/10.1039/c7bm01050h.

66. Magnetically actuated GelMA-based scaffolds as a strategy to generate complex bioprinted tissues / Ergene E. [et al.] // Adv. Mater. Technol. – 2024. – Vol. 9. – P. 2400119. https://doi.org/10.1002/admt.202400119.

67. Magnetically bioprinted human myometrial 3D cell rings as a model for uterine contractility / Souza G. R. [et al.] // Int. J. Mol. Sci. – 2017. – Mar 23. – Vol. 18. – № 4. – P. 683. https://doi.org/10.3390/ijms18040683.

68. Magnetothermal spider silk-based scaffolds for cartilage regeneration / Kryuchkova A. [et al.] // Int. J. Biol. Macromol. – 2023. – Dec 31. – Vol. 253 (Pt 6). – P. 127246. https://doi.org/10.1016/j.ijbiomac.2023.127246.

69. Campbell, P. G. Tissue engineering with the aid of inkjet printers / Campbell P. G., Weiss L. E. // Expert Opin. Biol. Ther. – 2007. – Aug. – Vol. 7. – № 8. – P. 1123-1127. https://doi.org/10.1517/14712598.7.8.1123.

70. In situ bioprinting: intraoperative implementation of regenerative medicine / Samandari M. [et al.] // Trends Biotechnol. – 2022. – Oct. – Vol. 40. – № 10. – P. 1229-1247. https://doi.org/10.1016/j.tibtech.2022.03.009.

71. In situ bioprinting – Bioprinting from benchside to bedside? / Singh S. [et al.] // Acta Biomater. – 2020. – Jan 1. – Vol. 101. – P. 14-25. https://doi.org/10.1016/j.actbio.2019.08.045.

72. Minimally invasive bioprinting for in situ liver regeneration / Yang Y. [et al.] // Bioact. Mater. – 2023. – Mar 29. – Vol. 26. – P. 465-477. https://doi.org/10.1016/j.bioactmat.2023.03.011.

73. Handheld instrument for wound-conformal delivery of skin precursor sheets improves healing in full-thickness burns / Cheng R. Y. [et al.] // Biofabrication. – 2020. – Feb 3. – Vol. 12. – № 2. – P. 025002. https://doi.org/10.1088/1758-5090/ab6413.

74. Application of robotic-assisted in situ 3D printing in cartilage regeneration with HAMA hydrogel: An in vivo study / Ma K. [et al.] // J. Adv. Res. – 2020. – Jan 28. – Vol. 23. – P. 123-132. https://doi.org/10.1016/j.jare.2020.01.010.

75. 4D printing of a sodium alginate hydrogel with step-wise shape deformation based on variation of crosslinking density / Cao P. [et al.] // ACS Appl. Polym. Mater. – 2021. – Nov 5. – Vol. 3. – № 12. – P. 6167-6175. https://doi.org/10.1021/acsapm.1c01034.

76. In situ 3D bioprinting with bioconcrete bioink / Xie M. [et al.] // Nat. Commun. – 2022. – Jun 23. – Vol. 13. – № 1. – P. 3597. https://doi.org/10.1038/s41467-022-30997-y.

77. In vivo printing of nanoenabled scaffolds for the treatment of skeletal muscle injuries / Quint J. P. [et al.] // Adv. Healthc. Mater. – 2021. – Т. 10. – № 10. – С. e2002152. doi: 10.1002/adhm.202002152.

78. Min, J. H. Incorporation of conductive materials into hydrogels for tissue engineering applications / Min J. H., Patel M., Koh W. G. // Polymers (Basel). – 2018. – Т. 10. – № 10. – С. 1078. doi: 10.3390/polym10101078.

79. In situ printing of adhesive hydrogel scaffolds for the treatment of skeletal muscle injuries / Russell C. S. [et al.] // ACS Appl. Bio Mater. – 2020. – Т. 3. – № 3. – С. 1568-1579. doi: 10.1021/acsabm.9b01176.

80. Analysis of the robotic-based in situ bioprinting workflow for the regeneration of damaged tissues through a case study / Fortunato G. M. [et al.] // Bioengineering. – 2023. – Т. 10. – № 5. – С. 560. doi: 10.3390/bioengineering10050560.

81. Intravital three-dimensional bioprinting / Urciuolo A. [et al.] // Nat. Biomed. Eng. – 2020. – Т. 4. – № 9. – С. 901-915.


Рецензия

Для цитирования:


Файрушина А.И., Заманова Р.А., Абдуллина Н.И., Махьянов Д.З., Иванова Р.Ш., Пятницкая С.В. СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ВИДОВ 3D-БИОПЕЧАТИ И ВОЗМОЖНОСТИ ИХ ПРИМЕНЕНИЯ В КЛИНИЧЕСКОЙ ПРАКТИКЕ. Медицинский вестник Башкортостана. 2024;19(6):95-104.

For citation:


Fairushina A.I., Zamanova R.A., Abdullina N.I., Makh’yanov D.Z., Ivanova R.Sh., Piatnitskaia S.V. COMPARATIVE CHARACTERISTICS OF 3D BIOPRINTING TYPES AND POSSIBILITIES OF THEIR APPLICATION IN CLINICAL PRACTICE. Bashkortostan Medical Journal. 2024;19(6):95-104. (In Russ.)

Просмотров: 26


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1999-6209 (Print)