COMPARATIVE CHARACTERISTICS OF 3D BIOPRINTING TYPES AND POSSIBILITIES OF THEIR APPLICATION IN CLINICAL PRACTICE
Abstract
Tissue and organ deficiency is a serious medical problem. Three-dimensional bioprinting is actively developing at present and is a multidisciplinary technology for designing of three-dimensional biological tissues with complex architecture and composition. This technology is promising due to the precise application of patient or donor cells in gels that act as scaffold matrices, which allows creating individual tissue-engineered constructs for tissue engineering and regenerative medicine. The emergence of in-situ bioprinting technology is very attractive for use in clinical practice. For example, this technology is direct printing at the site of a defect, which significantly increases the possibilities of its use for regenerative medicine.
Aim of this review is to comparatively analyze the main types of 3D bioprinting strategies. The analysis of publications and research studies over the past 20 years in the public database has been performed. Results: the main types of bioprinting, their advantages and disadvantages, the possibilities of their application for the creation of tissue-engineered constructs for tissue engineering and regenerative medicine are presented.
About the Authors
A. I. FairushinaRussian Federation
R. A. Zamanova
Russian Federation
N. I. Abdullina
Russian Federation
D. Z. Makh’yanov
Russian Federation
R. Sh. Ivanova
Russian Federation
S. V. Piatnitskaia
Russian Federation
References
1. Mirsky NA, Ehlen QT, Greenfield JA, Antonietti M, Slavin BV, Nayak VV, Pelaez D, Tse DT, Witek L, Daunert S, Coelho PG. Three-Dimensional Bioprinting: A Comprehensive Review for Applications in Tissue Engineering and Regenerative Medicine. Bioengineering (Basel). 2024 Jul 31;11(8):777. doi: 10.3390/bioengineering11080777. (in Engl)
2. Klebe RJ. Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res. 1988 Dec;179(2):362-73. doi: 10.1016/0014-4827(88)90275-3. (in Engl).
3. Odde DJ, Renn MJ. Laser-guided direct writing for applications in biotechnology. Trends Biotechnol. 1999 Oct;17(10):385-9. doi: 10.1016/s0167-7799(99)01355-4. (in Engl)
4. Li R, Zhao Y, Zheng Z, Liu Y, Song S, Song L, Ren J, Dong J, Wang P. Bioinks adapted for in situ bioprinting scenarios of defect sites: a review. RSC Adv. 2023 Mar 3;13(11):7153-7167. (in Engl)
5. Xu HQ, Liu JC, Zhang ZY, Xu CX. A review on cell damage, viability, and functionality during 3D bioprinting. Mil Med Res. 2022 Dec 16;9(1):70. doi: 10.1186/s40779-022-00429-5. (in Engl)
6. Kačarević ŽP, Rider PM, Alkildani S, Retnasingh S, Smeets R, Jung O, Ivanišević Z, Barbeck M. An Introduction to 3D Bioprinting: Possibilities, Challenges and Future Aspects. Materials (Basel). 2018 Nov 6;11(11):2199. doi: 10.3390/ma11112199. (in Engl)
7. Godar DE, Gurunathan C, Ilev I. 3D Bioprinting with UVA1 Radiation and Photoinitiator Irgacure 2959: Can the ASTM Standard L929 Cells Predict Human Stem Cell Cytotoxicity? Photochem Photobiol. 2019 Mar;95(2):581-586. (in Engl)
8. Nakamura M, Nishiyama Y, Henmi C. 3D micro-fabrication by inkjet 3D biofabrication for 3D tissue engineering. In: 2008 International Symposium on Micro-NanoMechatronics and Human Science; 2008; Nagoya, Japan. Piscataway (NJ): IEEE; 2008: 451-6. doi:10.1109/MHS.2008.4752495. (in Engl)
9. Li X, Liu B, Pei B, Chen J, Zhou D, Peng J, Zhang X, Jia W, Xu T. Inkjet Bioprinting of Biomaterials. Chem Rev. 2020 Oct 14;120(19):10793-10833. (in Engl)
10. Herzog J, Franke L, Lai Y, Gomez Rossi P, Sachtleben J, Weuster-Botz D. 3D bioprinting of microorganisms: principles and applications. Bioprocess Biosyst Eng. 2024 Apr;47(4):443-461. doi: 10.1007/s00449-023-02965-3. (in Engl)
11. Wilson WC Jr, Boland T. Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol. 2003 Jun;272(2):491-6. doi: 10.1002/ar.a.10057. (in Engl)
12. Zhang, Yi, Tse, Christopher, Rouholamin, Davood and Smith, Patrick. «Scaffolds for tissue engineering produced by inkjet printing» Open Engineering, 2012;2(3):325-335. (in Engl)
13. Miri AK, Mirzaee I, Hassan S, Mesbah Oskui S, Nieto D, Khademhosseini A, Zhang YS. Effective bioprinting resolution in tissue model fabrication. Lab Chip. 2019 Jun 7;19(11):2019-2037. doi: 10.1039/c8lc01037d. Epub 2019 May 13. (in Engl)
14. Guo, Y., Patanwala, H.S., Bognet, B. and Ma, A.W.K., «Inkjet and inkjet-based 3D printing: connecting fluid properties and printing performance», Rapid Prototyping Journal, 2017;23(3):562-576. https://doi.org/10.1108/RPJ-05-2016-0076(in Engl)
15. Tetsuka H, Shin SR. Materials and technical innovations in 3D printing in biomedical applications. J Mater Chem B. 2020 Apr 21;8(15):2930-2950. doi: 10.1039/d0tb00034e. (in Engl)
16. Albanna M, Binder KW, Murphy SV, Kim J, Qasem SA, Zhao W, Tan J, El-Amin IB, Dice DD, Marco J, Green J, Xu T, Skardal A, Holmes JH, Jackson JD, Atala A, Yoo JJ. In Situ Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds. Sci Rep. 2019 Feb 12;9(1):1856. doi: 10.1038/s41598-018-38366-w. (in Engl)
17. Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014 Apr;35(13):4026-34. doi: 10.1016/j.biomaterials.2014.01.064. (in Engl)
18. Cui X, Breitenkamp K, Finn MG, Lotz M, D'Lima DD. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A. 2012 Jun;18(11-12):1304-12. doi: 10.1089/ten.TEA.2011.0543. (in Engl)
19. Xu T, Baicu C, Aho M, Zile M, Boland T. Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication. 2009 Sep;1(3):035001. doi: 10.1088/1758-5082/1/3/035001. (in Engl)
20. DeMel DC, Wagner GA, Maresca JA, Geibel JP. Application of a 3D bioprinter: jet technology for 'biopatch' development using cells on hydrogel supports. Biotechniques. 2024 Feb;76(2):52-62. doi: 10.2144/btn-2023-0052. (in Engl)
21. Ma Y, Deng B, He R, Huang P. Advancements of 3D bioprinting in regenerative medicine: Exploring cell sources for organ fabrication. Heliyon. 2024 Jan 17;10(3):e24593. doi: 10.1016/j.heliyon.2024.e24593. (in Engl)
22. Byrne R, Carrico A, Lettieri M, Rajan AK, Forster RJ, Cumba LR. Bioinks and biofabrication techniques for biosensors development: A review. Mater Today Bio. 2024 Aug 5;28:101185. doi: 10.1016/j.mtbio.2024.101185. (in Engl)
23. Colina M, Serra P, Fernández-Pradas JM, Sevilla L, Morenza JL. DNA deposition through laser induced forward transfer. Biosens Bioelectron. 2005 Feb 15;20(8):1638-42. doi: 10.1016/j.bios.2004.08.047. (in Engl)
24. Bohandy J, Kim BF, Adrian FJ. Metal deposition from a supported metal film using an excimer laser. J Appl Phys. 1986;60(4):1538-9. https://doi.org/10.1063/1.337287 (in Engl)
25. Barron JA, Wu P, Ladouceur HD, Ringeisen BR. Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices. 2004 Jun;6(2):139-47. doi: 10.1023/b:bmmd.0000031751.67267.9f. (in Engl)
26. Barron JA, Ringeisen BR, Kim H, Spargo BJ, Chrisey DB. Application of laser printing to mammalian cells. Thin Solid Films. 2004;453:383-7. DOI:10.1016/J.TSF.2003.11.161 (in Engl)
27. Mézel C, Souquet A, Hallo L, Guillemot F. Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling. Biofabrication. 2010 Mar;2(1):014103. doi: 10.1088/1758-5082/2/1/014103. (in Engl)
28. Xiong R, Zhang Z, Chai W, Huang Y, Chrisey DB. Freeform drop-on-demand laser printing of 3D alginate and cellular constructs. Biofabrication. 2015 Dec 22;7(4):045011. doi: 10.1088/1758-5090/7/4/045011. (in Engl)
29. Li J, Chen M, Fan X, et al. Recent Advances in Bioprinting Techniques:Approaches, Applications and Future Prospects. J Transl Med. 2016;14:1–15. doi: 10.1186/s12967-016-1028-0. https://doi.org/10.1186/s12967-016-1028-0. (in Engl)
30. Pedroza-González SC, Rodriguez-Salvador M, Pérez-Benítez BE, Alvarez MM, Santiago GT. Bioinks for 3D Bioprinting: A Scientometric Analysis of Two Decades of Progress. Int J Bioprint. 2021 Apr 20;7(2):333. doi: 10.18063/ijb.v7i2.337. (in Engl)
31. Xiong R, Zhang Z, Chai W, Chrisey DB, Huang Y. Study of gelatin as an effective energy absorbing layer for laser bioprinting. Biofabrication. 2017 Jun 9;9(2):024103. doi: 10.1088/1758-5090/aa74f2. (in Engl)
32. Karakaidos P, Kryou C, Simigdala N, Klinakis A, Zergioti I. Laser Bioprinting of Cells Using UV and Visible Wavelengths: A Comparative DNA Damage Study. Bioengineering (Basel). 2022 Aug 9;9(8):378. doi: 10.3390/bioengineering9080378. (in Engl)
33. Hall GN, Fan Y, Viellerobe B, Iazzolino A, Dimopoulos A, Poiron C, Clapies A, Luyten FP, Guillemot F, Papantoniou I. Laser-assisted bioprinting of targeted cartilaginous spheroids for high density bottom-up tissue engineering. Biofabrication. 2024 Aug 22;16(4). doi: 10.1088/1758-5090/ad6e1a. (in Engl)
34. Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B, Vogt PM, Reimers K. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One. 2013;8(3):e57741. doi: 10.1371/journal.pone.0057741. (in Engl)
35. Xiong R, Zhang Z, Chai W, Huang Y, Chrisey DB. Freeform drop-on-demand laser printing of 3D alginate and cellular constructs. Biofabrication. 2015 Dec 22;7(4):045011. doi: 10.1088/1758-5090/7/4/045011. (in Engl)
36. Catros S, Fricain JC, Guillotin B, Pippenger B, Bareille R, Remy M, Lebraud E, Desbat B, Amédée J, Guillemot F. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication. 2011 Jun;3(2):025001. doi: 10.1088/1758-5082/3/2/025001. (in Engl)
37. Chang J, Sun X. Laser-induced forward transfer based laser bioprinting in biomedical applications. Front Bioeng Biotechnol. 2023 Aug 21;11:1255782. doi: 10.3389/fbioe.2023.1255782. (in Engl)
38. Zennifer A, Subramanian A, Sethuraman S. Design considerations of bioinks for laser bioprinting technique towards tissue regenerative applications. Bioprinting. 2022; 27: e00205. DOI:10.1016/j.bprint.2022.e00205 (in Engl)
39. Budharaju H, Sundaramurthi D, Sethuraman S. Embedded 3D bioprinting - An emerging strategy to fabricate biomimetic & large vascularized tissue constructs. Bioact Mater. 2023 Oct 21;32:356-384. doi: 10.1016/j.bioactmat.2023.10.012. (in Engl)
40. Cui X, Li J, Hartanto Y, Durham M, Tang J, Zhang H, Hooper G, Lim K, Woodfield T. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks. Adv Healthc Mater. 2020 Aug;9(15):e1901648. doi: 10.1002/adhm.201901648. (in Engl)
41. Zhang YS, Haghiashtiani G, Hübscher T, et al. 3D extrusion bioprinting. Nat Rev Methods Primers. 2021;1:75. doi:10.1038/s43586-021-00073-8. (in Engl)
42. Ravanbakhsh H, Karamzadeh V, Bao G, Mongeau L, Juncker D, Zhang YS. Emerging Technologies in Multi-Material Bioprinting. Adv Mater. 2021 Dec;33(49):e2104730. doi: 10.1002/adma.202104730. (in Engl)
43. Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016 Jul-Aug;34(4):422-434. doi: 10.1016/j.biotechadv.2015.12.011. (in Engl)
44. Tripathi S, Mandal SS, Bauri S, Maiti P. 3D bioprinting and its innovative approach for biomedical applications. MedComm. 2022 Dec 24;4(1). doi:10.1002/mco2.194. (in Engl)
45. Perez-Valle A, Del Amo C, Andia I. Overview of Current Advances in Extrusion Bioprinting for Skin Applications. Int J Mol Sci. 2020 Sep 12;21(18):6679. doi: 10.3390/ijms21186679 (in Engl)
46. Dolati F, Yu Y, Zhang Y, De Jesus AM, Sander EA, Ozbolat IT. In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits. Nanotechnology. 2014 Apr 11;25(14):145101. doi: 10.1088/0957-4484/25/14/145101 (in Engl)
47. Nedrelow DS, Townsend JM, Detamore MS. Osteochondral Regeneration With Anatomical Scaffold 3D-Printing-Design Considerations for Interface Integration. J Biomed Mater Res A. 2024 Oct 10. doi: 10.1002/jbm.a.37804 (in Engl)
48. You F, Eames BF, Chen X. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering. Int J Mol Sci. 2017 Jul 23;18(7):1597. doi: 10.3390/ijms18071597.Chen K, Jiang E, Wei X, Xia Y, Wu Z, Gong Z, Shang Z, Guo S. The acoustic droplet printing of functional tumor microenvironments. Lab Chip. 2021 Apr 20;21(8):1604-1612. doi: 10.1039/d1lc00003a.(in Engl)
49. Fornetti E, De Paolis F, Fuoco C, Bernardini S, Giannitelli SM, Rainer A, Seliktar D, Magdinier F, Baldi J, Biagini R, Cannata S, Testa S, Gargioli C. A novel extrusion-based 3D bioprinting system for skeletal muscle tissue engineering. Biofabrication. 2023 Feb 3;15(2). doi: 10.1088/1758-5090/acb573 (in Engl)
50. Wu T, Gao YY, Su J, Tang XN, Chen Q, Ma LW, Zhang JJ, Wu JM, Wang SX. Three-dimensional bioprinting of artificial ovaries by an extrusion-based method using gelatin-methacryloyl bioink. Climacteric. 2022 Apr;25(2):170-178. doi: 10.1080/13697137.2021.1921726 (in Engl)
51. Gospodinova A, Nankov V, Tomov S, Redzheb M, Petrov PD. Extrusion bioprinting of hydroxyethylcellulose-based bioink for cervical tumor model. Carbohydr Polym. 2021 May 15;260:117793. doi: 10.1016/j.carbpol.2021.117793 (in Engl)
52. Wu, Z., Pan, M., Wang, J., Wen, B., Lu, L., and Ren, H. (2022). Acoustofluidics for cell patterning and tissue engineering. Eng. Regen. 3 (4), 397–406. doi:10.1016/j.engreg.2022.08.005 (in Engl)
53. Orme B, Torun H, Unthank M, Fu YQ, Ford B, Agrawal P. Capillary wave tweezer. Sci Rep. 2024 May 30;14(1):12448. doi: 10.1038/s41598-024-63154-0. (in Engl)
54. Mierke CT. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells. 2024 Oct 1;13(19):1638. doi: 10.3390/cells13191638.(in Engl)
55. Bouyer C, Chen P, Güven S, Demirtaş TT, Nieland TJ, Padilla F, Demirci U. A Bio-Acoustic Levitational (BAL) Assembly Method for Engineering of Multilayered, 3D Brain-Like Constructs, Using Human Embryonic Stem Cell Derived Neuro-Progenitors. Adv Mater. 2016 Jan 6;28(1):161-7. doi: 10.1002/adma.201503916. (in Engl)
56. Armstrong JPK, Puetzer JL, Serio A, Guex AG, Kapnisi M, Breant A, Zong Y, Assal V, Skaalure SC, King O, Murty T, Meinert C, Franklin AC, Bassindale PG, Nichols MK, Terracciano CM, Hutmacher DW, Drinkwater BW, Klein TJ, Perriman AW, Stevens MM. Engineering Anisotropic Muscle Tissue using Acoustic Cell Patterning. Adv Mater. 2018 Oct;30(43):e1802649. doi: 10.1002/adma.201802649. (in Engl)
57. Serpooshan V, Chen P, Wu H, Lee S, Sharma A, Hu DA, Venkatraman S, Ganesan AV, Usta OB, Yarmush M, Yang F, Wu JC, Demirci U, Wu SM. Bioacoustic-enabled patterning of human iPSC-derived cardiomyocytes into 3D cardiac tissue. Biomaterials. 2017 Jul;131:47-57. doi: 10.1016/j.biomaterials.2017.03.037. (in Engl)
58. Parfenov VA, Koudan EV, Krokhmal AA, Annenkova EA, Petrov SV, Pereira FDAS, Karalkin PA, Nezhurina EK, Gryadunova AA, Bulanova EA, Sapozhnikov OA, Tsysar SA, Liu K, Oosterwijk E, van Beuningen H, van der Kraan P, Granneman S, Engelkamp H, Christianen P, Kasyanov V, Khesuani YD, Mironov VA. Biofabrication of a Functional Tubular Construct from Tissue Spheroids Using Magnetoacoustic Levitational Directed Assembly. Adv Healthc Mater. 2020 Dec;9(24):e2000721. doi: 10.1002/adhm.202000721. (in Engl)
59. Chansoria P, Narayanan LK, Schuchard K, Shirwaiker RMin JH, Patel M, Koh WG. Incorporation of Conductive Materials into Hydrogels for Tissue Engineering Applications. Polymers (Basel). 2018 Sep 28;10(10):1078. doi: 10.3390/polym10101078. (in Engl)
60. Chen H, Wu Z, Gong Z, Xia Y, Li J, Du L, Zhang Y, Gao X, Fan Z, Hu H, Qian Q, Ding Z, Guo S. Acoustic Bioprinting of Patient-Derived Organoids for Predicting Cancer Therapy Responses. Adv Healthc Mater. 2022 Jul;11(13):e2102784. doi: 10.1002/adhm.202102784. (in Engl)
61. Guo F, Mao Z, Chen Y, Xie Z, Lata JP, Li P, Ren L, Liu J, Yang J, Dao M, Suresh S, Huang TJ. Three-dimensional manipulation of single cells using surface acoustic waves. Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1522-7. doi: 10.1073/pnas.1524813113.(in Engl)
62. Sabzevari A, Rayat Pisheh H, Ansari M, Salati A. Progress in bioprinting technology for tissue regeneration. J Artif Organs. 2023 Dec;26(4):255-274. doi: 10.1007/s10047-023-01394-z. (in Engl)
63. Abdel Fattah AR, Meleca E, Mishriki S, Lelic A, Geng F, Sahu RP, Ghosh S, Puri IK. In Situ 3D Label-Free Contactless Bioprinting of Cells through Diamagnetophoresis. ACS Biomater Sci Eng. 2016 Dec 12;2(12):2133-2138. doi: 10.1021/acsbiomaterials.6b00614. (in Engl)
64. Tseng H, Gage JA, Shen T, Haisler WL, Neeley SK, Shiao S, Chen J, Desai PK, Liao A, Hebel C, Raphael RM, Becker JL, Souza GR. A spheroid toxicity assay using magnetic 3D bioprinting and real-time mobile device-based imaging. Sci Rep. 2015 Sep 14;5:13987. doi: 10.1038/srep13987.(in Engl)
65. Abdel Fattah AR, Mishriki S, Kammann T, Sahu RP, Geng F, Puri IK. 3D cellular structures and co-cultures formed through the contactless magnetic manipulation of cells on adherent surfaces. Biomater Sci. 2018 Feb 27;6(3):683-694. doi: 10.1039/c7bm01050h. (in Engl)
66. Ergene E, Liman G, Yilgor P, Demirel G. Magnetically actuated GelMA-based scaffolds as a strategy to generate complex bioprinted tissues. Adv Mater Technol. 2024;9:2400119. doi:10.1002/admt.202400119. (in Engl)
67. Souza GR, Tseng H, Gage JA, Mani A, Desai P, Leonard F, Liao A, Longo M, Refuerzo JS, Godin B. Magnetically Bioprinted Human Myometrial 3D Cell Rings as A Model for Uterine Contractility. Int J Mol Sci. 2017 Mar 23;18(4):683. doi: 10.3390/ijms18040683.(in Engl)
68. Kryuchkova A, Savin A, Kiseleva A, Dukhinova M, Krivoshapkina E, Krivoshapkin P. Magnetothermal spider silk-based scaffolds for cartilage regeneration. Int J Biol Macromol. 2023 Dec 31;253(Pt 6):127246. doi: 10.1016/j.ijbiomac.2023.127246. (in Engl)
69. Campbell PG, Weiss LE. Tissue engineering with the aid of inkjet printers. Expert Opin Biol Ther. 2007 Aug;7(8):1123-7. doi: 10.1517/14712598.7.8.1123. (in Engl)
70. Samandari M, Mostafavi A, Quint J, Memic A, Tamayol A. In situ bioprinting: intraoperative implementation of regenerative medicine. Trends Biotechnol. 2022 Oct;40(10):1229-1247. doi: 10.1016/j.tibtech.2022.03.009. (in Engl)
71. Singh S, Choudhury D, Yu F, Mironov V, Naing MW. In situ bioprinting - Bioprinting from benchside to bedside? Acta Biomater. 2020 Jan 1;101:14-25. doi: 10.1016/j.actbio.2019.08.045. (in Engl)
72. Yang Y, Yu Z, Lu X, Dai J, Zhou C, Yan J, Wang L, Wang Z, Zang J. Minimally invasive bioprinting for in situ liver regeneration. Bioact Mater. 2023 Mar 29;26:465-477. doi: 10.1016/j.bioactmat.2023.03.011. (in Engl)
73. Cheng RY, Eylert G, Gariepy JM, He S, Ahmad H, Gao Y, Priore S, Hakimi N, Jeschke MG, Günther A. Handheld instrument for wound-conformal delivery of skin precursor sheets improves healing in full-thickness burns. Biofabrication. 2020 Feb 3;12(2):025002. doi: 10.1088/1758-5090/ab6413. (in Engl)
74. Ma K, Zhao T, Yang L, Wang P, Jin J, Teng H, Xia D, Zhu L, Li L, Jiang Q, Wang X. Application of robotic-assisted in situ 3D printing in cartilage regeneration with HAMA hydrogel: An in vivo study. J Adv Res. 2020 Jan 28;23:123-132. doi: 10.1016/j.jare.2020.01.010. (in Engl)
75. Cao P, Tao L, Gong J, Wang T, Wang Q, Ju J, Zhang Y. 4D printing of a sodium alginate hydrogel with step-wise shape deformation based on variation of crosslinking density. ACS Applied Polymer Materials. 2021 Nov 5;3(12):6167-75. doi: 10.1021/acsapm.1c01034 (in Engl)
76. Xie M, Shi Y, Zhang C, Ge M, Zhang J, Chen Z, Fu J, Xie Z, He Y. In situ 3D bioprinting with bioconcrete bioink. Nat Commun. 2022 Jun 23;13(1):3597. doi: 10.1038/s41467-022-30997-y. (in Engl)
77. Quint JP, Mostafavi A, Endo Y, Panayi A, Russell CS, Nourmahnad A, Wiseman C, Abbasi L, Samandari M, Sheikhi A, Nuutila K, Sinha I, Tamayol A. In Vivo Printing of Nanoenabled Scaffolds for the Treatment of Skeletal Muscle Injuries. Adv Healthc Mater. 2021 May;10(10):e2002152. doi: 10.1002/adhm.202002152.(in Engl)
78. Min JH, Patel M, Koh WG. Incorporation of Conductive Materials into Hydrogels for Tissue Engineering Applications. Polymers (Basel). 2018 Sep 28;10(10):1078. doi: 10.3390/polym10101078.(in Engl)
79. Russell CS, Mostafavi A, Quint JP, Panayi AC, Baldino K, Williams TJ, Daubendiek JG, Hugo Sánchez V, Bonick Z, Trujillo-Miranda M, Shin SR, Pourquie O, Salehi S, Sinha I, Tamayol A. In Situ Printing of Adhesive Hydrogel Scaffolds for the Treatment of Skeletal Muscle Injuries. ACS Appl Bio Mater. 2020 Mar 16;3(3):1568-1579. doi: 10.1021/acsabm.9b01176.(in Engl)
80. Fortunato GM, Sigismondi S, Nicoletta M, Condino S, Montemurro N, Vozzi G, Ferrari V, De Maria C. Analysis of the Robotic-Based In Situ Bioprinting Workflow for the Regeneration of Damaged Tissues through a Case Study. Bioengineering. 2023; 10(5):560. https://doi.org/10.3390/bioengineering10050560 (in Engl)
81. Urciuolo A, Poli I, Brandolino L, Raffa P, Scattolini V, Laterza C, Giobbe GG, Zambaiti E, Selmin G, Magnussen M, Brigo L, De Coppi P, Salmaso S, Giomo M, Elvassore N. Intravital three-dimensional bioprinting. Nat Biomed Eng. 2020 Sep;4(9):901-915. doi: 10.1038/s41551-020-0568-z. (in Engl)
Review
For citations:
Fairushina A.I., Zamanova R.A., Abdullina N.I., Makh’yanov D.Z., Ivanova R.Sh., Piatnitskaia S.V. COMPARATIVE CHARACTERISTICS OF 3D BIOPRINTING TYPES AND POSSIBILITIES OF THEIR APPLICATION IN CLINICAL PRACTICE. Bashkortostan Medical Journal. 2024;19(6):95-104. (In Russ.)