THE REDOX STATUS OF THE WATERY MOISTURE OF THE ANTERIOR CHAMBER OF THE EYE IN PRIMARY OPEN-ANGLE GLAUCOMA
Abstract
The review summarizes the information of the last three decades on the state of the redox system and markers of oxidative homeostasis of the aqueous humor of the anterior chamber of the eye in primary open-angle glaucoma (POAG). It is known, that the imbalance of the redox status with the formation of oxidative stress can cause the development of many eye diseases, including POAG. At the same time, highly informative biomarkers for the early diagnosis and prognosis of glaucoma have not been established at present. It is unlikely that one biomarker will be able to help in detecting glaucoma. The etiologic and pathogenetic heterogeneity of the disease will likely require the study of a number of different markers of oxidative stress for early detection and prognosis of POAG. This review presents the most informative biomarkers of oxidative stress in the aqueous humor of the anterior chamber of the eye in the context of the pathophysiology of the disease. It is expected that some of them will be useful for clinical diagnostics and monitoring of clinical responses to standard and experimental treatments.
About the Authors
E. V. MedvedevaRussian Federation
I. M. Bykov
Russian Federation
References
1. Natsional'noe rukovodstvo po glaukome (National guideline for glaucoma): pod red. E.A. Egorova, V.P. Ericheva. Moskva: GEOTARMedia, 2019:3–8. (in Russ.)
2. Dammak A. [et al.]. Oxidative Stress in the Anterior Ocular Diseases: Diagnostic and Treatment. Biomedicines. 2023;11(2):292. (in Engl.) DOI: 10.3390/biomedicines11020292.
3. Izzotti A. [et al.]. Sensitivity of ocular anterior chamber tissues to oxidative damage and its relevance to the pathogenesis of glaucoma. Invest. Ophthalmol. Vis. Sci. 2009;50(11):5251–5258. (in Engl.) DOI: 10.1167/iovs.09-3871.
4. Bissell M., Fetian I., Mozaffarieh M. The Role of Oxidative Stress in the Pathogenesis of Eye Diseases. hb. TIMES Schw. Aerztej. 2022;6(3–4):72–77. (in Engl.) DOI: 10.36000/hbT.2022.06.002.
5. Tangvarasittichai O., Tangvarasittichai S. Oxidative Stress, Ocular Disease and Diabetes Retinopathy. Curr. Pharm. Des. 2018;24(40): 4726–4741. (in Engl.) DOI: 10.2174/1381612825666190115121531.
6. Erb C., Heinke M. Oxidative stress in primary open-angle glaucoma. Front. Biosci. (Elite Ed.). 2011;3(4):1524–1533. (in Engl.) DOI: 10.2741/e353.
7. Aranaz M. [et al.]. Homeostatic alterations related to total antioxidant capacity, elemental concentrations and isotopic compositions in aqueous humor of glaucoma patients. Anal. Bioanal. Chem. 2022;414(1):515–524. (in Engl.) DOI: 10.1007/s00216-021-03467-5.
8. Brubaker R.F. [et al.]. Ascorbic acid content of human corneal epithelium. Invest. Ophthalmol. Vis. Sci. 2000;41(7):1681–1683. (in Engl.)
9. Goyal A. [et al.]. Evaluation of oxidative stress markers in aqueous humor of primary open angle glaucoma and primary angle closure glaucoma patients. Curr. Eye Res. 2014;39(8):823–829. (in Engl.) DOI: 10.3109/02713683.2011.556299.
10. Socci R.R., Delamere N.A. Characteristics of ascorbate transport in the rabbit iris-ciliary body. Exp. Eye Res. 1988;46(6):853–861. (in Engl.) DOI: 10.1016/s0014-4835(88)80037-x.
11. Rao N.A. [et al.]. Superoxide dismutase in ocular structures. Invest. Ophthalmol. Vis. Sci. 1985;26(12):1778–1781. (in Engl.)
12. Martín-Alonso J.M., Ghosh S., Coca-Prados M. Cloning of the bovine plasma selenium-dependent glutathione peroxidase (GP) cDNA from the ocular ciliary epithelium: expression of the plasma and cellular forms within the mammalian eye. J.Biochem.1993;114(2):284–291.(inEngl.)DOI:10.1093/oxfordjournals. jbchem.a124168.
13. Umapathy A., Donaldson P., Lim J. Antioxidant delivery pathways in the anterior eye. Biomed. Res. Int. 2013;2013:207250. (in Engl.) DOI: 10.1155/2013/207250.
14. Solomatina M.V., Likhvantseva V.G., Kolesnikov A.V. Immunological aspects of glaucoma. Practical Medicine. 2017;(3):16–21. (in Russ.)
15. Chen Y., Mehta G., Vasiliou V. Antioxidant defenses in the ocular surface. Ocul. Surf. 2009;7(4):176–185. (in Engl.) DOI: 10.1016/s1542-0124(12)70185-4.
16. Bagnis A. [et al.]. Aqueous humor oxidative stress proteomic levels in primary open angle glaucoma. Exp. Eye Res. 2012;103:55–62. (in Engl.) DOI: 10.1016/j.exer.2012.07.011.
17. Malishevskaya T.N., Dolgova I.G. Options for correction of endothelial dysfunction and oxidative stress in patients with primary openangle glaucoma. Annals of Ophthalmology. 2014;130(5):67–73. (in Russ.)
18. Rusmayani E., Artini W., Sasongko M. Ischemia Modified Albumin (IMA) as a New Biomarker in the Ophthalmology Field: A Brief Literature Review. Open Ophthalmol. J. 2022;16:e187436412208010. (in Engl.) DOI: 10.2174/18743641-v16-e2208010.
19. Ferreira S.M. [et al.]. Oxidative stress markers in aqueous humor of glaucoma patients. Am. J. Ophthalmol. 2004;137(1):62–69. (in Engl.) DOI: 10.1016/s0002-9394(03)00788-8.
20. Zanon-Moreno V. [et al.]. Oxidative stress in primary open-angle glaucoma. J. Glaucoma. 2008;17(4):263–268. (in Engl.) DOI: 10.1097/IJG.0b013e31815c3a7f.
21. Takai Y., Tanito M., Ohira A. Multiplex cytokine analysis of aqueous humor in eyes with primary open-angle glaucoma, exfoliation glaucoma, and cataract. Invest. Ophthalmol. Vis. Sci. 2012;53(1):241–247. (in Engl.) DOI: 10.1167/iovs.11-8434.
22. Engin K.N. [et al.]. Variability of serum oxidative stress biomarkers relative to biochemical data and clinical parameters of glaucoma patients. Mol. Vis. 2010;16:1260–1271. (in Engl.)
23. McElnea E.M. [et al.]. Oxidative stress, mitochondrial dysfunction and calcium overload in human lamina cribrosa cells from glaucoma donors. Mol. Vis. 2011;17:1182–1191. (in Engl.)
24. Young I.S. Measurement of total antioxidant capacity. J. Clin. Pathol. 2001;54(5): 3339. (in Engl.) DOI: 10.1136/jcp.54.5.339.
25. Shu D.Y. [et al.]. Role of Oxidative Stress in Ocular Diseases: A Balancing Act. Metabolites. 2023;13(2):187. (in Engl.) DOI: 10.3390/metabo13020187.
26. Reiss G.R. [et al.]. Ascorbic acid levels in the aqueous humor of nocturnal and diurnal mammals. Arch. Ophthalmol. 1986;104(5):753– 755. (in Engl.) DOI: 10.1001/archopht.1986.01050170143039.
27. Riley M.V., Meyer R.F., Yates E.M. Glutathione in the aqueous humor of human and other species. Invest. Ophthalmol. Vis. Sci. 1980;19(1):94–96. (in Engl.)
28. Jozefczak M. [et al.]. Glutathione is a key player in metal-induced oxidative stress defenses. Int. J. Mol. Sci. 2012;13(3):3145–3175. (in Engl.) DOI: 10.3390/ijms13033145.
29. Richer S.P., Rose R.C. Water soluble antioxidants in mammalian aqueous humor: interaction with UV B and hydrogen peroxide. Vision Res. 1998;38(19):2881–2888. (in Engl.) DOI: 10.1016/s0042-6989(98)00069-8.
30. Ganea E., Harding J.J. Glutathione-related enzymes and the eye. Curr. Eye Res. 2006;31(1):1–11. (in Engl.) DOI: 10.1080/02713680500477347.
31. Forman H.J., Zhang H., Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med. 2009;30(1–2):1–12. (in Engl.) DOI: 10.1016/j.mam.2008.08.006.
32. Marmysh V.G. The role of the glutathione system in maintaining redox-homeostasis and antioxidant protection in inflammatory and degenerative diseases of the organ of vision. Journal of the Grodno State Medical University. 2021;19(4):382–391. (in Russ.) DOI: 10.25298/2221-8785-2021-19-4-382-391.
33. Toppo S. [et al.]. Catalytic mechanisms and specificities of glutathione peroxidases: variations of a basic scheme. Biochim. Biophys. Acta. 2009;1790(11):1486–1500. (in Engl.) DOI: 10.1016/j.bbagen.2009.04.007.
34. Flohé L. [et al.]. A comparison of thiol peroxidase mechanisms. Antioxid. Redox Signal. 2011;15(3):763–780. (in Engl.) DOI: 10.1089/ars.2010.3397.
35. Ghanem A.A., Arafa L.F., El-Baz A. Oxidative stress markers in patients with primary open-angle glaucoma. Curr. Eye Res. 2010;35(4):295–301. (in Engl.) DOI: 10.3109/02713680903548970.
36. Lu L. [et al.]. Increased expression of glutathione peroxidase 4 strongly protects retina from oxidative damage. Antioxid. Redox Signal. 2009;11(4):715–724. (in Engl.) DOI: 10.1089/ars.2008.2171.
37. Costarides A.P., Riley M.V., Green K. Roles of catalase and the glutathione redox cycle in the regulation of anterior-chamber hydrogen peroxide. Ophthalmic. Res. 1991;23(5):284–294. (in Engl.) DOI: 10.1159/000267124.
38. Costagliola C. [et al.]. Effect of vitamin E on glutathione content in red blood cells, aqueous humor and lens of humans and other species. Exp. Eye Res. 1986;43(6):905–914. (in Engl.) DOI: 10.1016/0014-4835(86)90069-2.
39. Takayanagi Y. [et al.]. Evaluation of Redox Profiles of the Serum and Aqueous Humor in Patients with Primary Open-Angle Glaucoma and Exfoliation Glaucoma. Antioxidants (Basel). 2020;9(12):1305. (in Engl.) DOI: 10.3390/antiox9121305.
40. Chen H. [et al.]. Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat. Commun. 2018;9(1):3209. (in Engl.) DOI: 10.1038/s41467-018-05681-9.
41. Ringvold A. The significance of ascorbate in the aqueous humour protection against UV-A and UV-B. Exp. Eye Res. 1996;62(3):261–264. (in Engl.) DOI: 10.1006/exer.1996.0031.
42. Helbig H. [et al.]. Electrogenic Na+-ascorbate cotransport in cultured bovine pigmented ciliary epithelial cells. Am. J. Physiol. 1989;256(1 Pt 1):C44–C49. (in Engl.) DOI: 10.1152/ajpcell.1989.256.1.C44.
43. Rose R.C., Richer S.P., Bode A.M. Ocular oxidants and antioxidant protection. Proc. Soc. Exp. Biol. Med. 1998;217(4):397–407. (in Engl.) DOI: 10.3181/00379727-217-44250.
44. Erb, C. Oxidative stress in primary open-angle glaucoma / C. Erb, M. Heinke // Front. Biosci. (Elite Ed.). – 2011. – Vol. 3, № 4. – P. 1524–1533.
45. Ammar D.A., Hamweyah K.M., Kahook M.Y. Antioxidants Protect Trabecular Meshwork Cells From Hydrogen Peroxide-Induced Cell Death. Transl. Vis. Sci. Technol. 2012;1(1):4. (in Engl.) DOI: 10.1167/tvst.1.1.4.
46. Corti A., Casini A.F., Pompella A. Cellular pathways for transport and efflux of ascorbate and dehydroascorbate. Arch. Biochem. Biophys. 2010;500(2):107–115. (in Engl.) DOI: 10.1016/j.abb.2010.05.014.
47. Behndig A. [et al.]. Superoxide dismutase isoenzymes in the human eye. Invest. Ophthalmol. Vis. Sci. 1998;39(3):471–475. (in Engl.)
48. Horwath-Winter J. [et al.]. Determination of uric acid concentrations in human tear fluid, aqueous humour and serum. Acta Ophthalmol. 2009;87(2):188–192. (in Engl.) DOI: 10.1111/j.1755-3768.2008.01215.x.
49. Ames B.N. [et al.]. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc. Natl. Acad. Sci. U. S. A. 1981;78(11):6858–6862. (in Engl.) DOI: 10.1073/pnas.78.11.6858.
50. Becker B.F. [et al.]. Role of uric acid as an endogenous radical scavenger and antioxidant. Chest. 1991;100(3 Suppl):176S–181S. (in Engl.) DOI: 10.1378/chest.100.3_supplement.176s.
51. Abu-Amero K.K., Morales J., Bosley T.M. Mitochondrial abnormalities in patients with primary open-angle glaucoma. Invest. Ophthalmol. Vis. Sci. 2006;47(6):2533–2541. (in Engl.) DOI: 10.1167/iovs.05-1639.
52. Abu-Amero K.K. [et al.]. Decreased total antioxidants in patients with primary open angle glaucoma. Curr. Eye Res. 2013;38(9):959– 964. (in Engl.) DOI: 10.3109/02713683.2013.794246.
53. Chowdhury S. [et al.]. Information propagation within the Genetic Network of Saccharomyces cerevisiae. BMC Syst. Biol. 2010;4:143. (in Engl.) DOI: 10.1186/1752-0509-4-143.
54. Kondkar A.A. [et al.]. Elevated Plasma Level of 8-Hydroxy-2'-deoxyguanosine Is Associated with Primary Open-Angle Glaucoma. J. Ophthalmol. 2020;2020:6571413. (in Engl.) DOI: 10.1155/2020/6571413.
55. Mumcu U.Y. [et al.]. Decreased paraoxonase1 activity and increased malondialdehyde and oxidative DNA damage levels in primary open angle glaucoma. Int. J. Ophthalmol. 2016;9(10):1518–1520. (in Engl.) DOI: 10.18240/ijo.2016.10.24.
56. Sorkhabi R. [et al.]. Oxidative DNA damage and total antioxidant status in glaucoma patients. Mol. Vis. 2011;17:41–46. (in Engl.)
57. Pinazo-Durán M.D. [et al.]. Biochemical-molecular-genetic biomarkers in the tear film, aqueous humor, and blood of primary openangle glaucoma patients. Front. Med. (Lausanne). 2023;10:1157773. (in Engl.) DOI: 10.3389/fmed.2023.1157773.
58. Kodeboyina S.K. [et al.]. Aqueous Humor Proteomic Alterations Associated with Visual Field Index Parameters in Glaucoma Patients: A Pilot Study. J. Clin. Med. 2021;10(6):1180. (in Engl.) DOI: 10.3390/jcm10061180.
59. Tanito M. [et al.]. Association between systemic oxidative stress and visual field damage in open-angle glaucoma. Sci. Rep. 2016;6:25792. (in Engl.) DOI: 10.1038/srep25792.
60. Adav S.S. [et al.]. Proteomic Analysis of Aqueous Humor from Primary Open Angle Glaucoma Patients on Drug Treatment Revealed Altered Complement Activation Cascade. J. Proteome Res. 2018;17(7):2499–2510. (in Engl.) DOI: 10.1021/acs.jproteome.8b00244.
61. Sato K. [et al.]. Reduced glutathione level in the aqueous humor of patients with primary open-angle glaucoma and normal-tension glaucoma. NPJ Aging. 2023;9(1):28. (in Engl.) DOI: 10.1038/s41514-023-00124-2.
Review
For citations:
Medvedeva E.V., Bykov I.M. THE REDOX STATUS OF THE WATERY MOISTURE OF THE ANTERIOR CHAMBER OF THE EYE IN PRIMARY OPEN-ANGLE GLAUCOMA. Bashkortostan Medical Journal. 2024;19(6):110-119. (In Russ.)