Preview

Bashkortostan Medical Journal

Advanced search

MONOSIALOGANGLIOSIDE GM1: STRUCTURE, ANTI-APOPTOTIC PROPERTIES AND NEUROPROTECTION

Abstract

Since 1963, many papers have been published on the structure, function and participation of monosialoganglioside GM1 as a component of the cell membrane. Particular interest in this sphingolipid appeared after discovery of cholera toxin, when it was proved that the pathogenesis of cholera is induced after interaction with the membrane receptor GM1. The structure of gangliosideGM1 was established in 1963, and in the 1980s Lars Svennerholm proposed the classification of sphingolipids. In vitro experiments have shown that GM1 contributes to the recovery and survival of neurons in various brain lesions, by potentiating trophic factors such as NGF, bFGF, EGF, BNDF; and in the case of its exogenous administration it facilitates imitation of neurotrophic action and prevention of neuronal death. Despite the fact that using exogenous isolated GM1 on people is limited, in many clinical trials it has shown a good anti-apoptotic effect, as an independent substance, and in combination with other neuroprotectors.

About the Authors

A. A. Mavlikhanova
ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России; Харбинский медицинский университет
Russian Federation


V. N. Pavlov
ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Russian Federation


B. . Yang
Харбинский медицинский университет
Russian Federation


V. A. Kataev
ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Russian Federation


N. . Wang
Харбинский медицинский университет
Russian Federation


E. F. Agletdinov
ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Russian Federation


C. Y. Kang
Харбинский медицинский университет
Russian Federation


J. . Hu
Харбинский медицинский университет
Russian Federation


References

1. Bian L., Yang J., Sun Y. Isolation and purification of monosialotetrahexosylgangliosides from pig brain by extraction and liquid chromatography. Biomed. Chromatog. 2015; 29(10): 1604-11. doi: 10.1002/bmc.3467

2. Bisel B., Pavone F.S., Calamai M. GM1 and GM2 gangliosides: recent developments. Biomol. Concepts. 2014; 5(1): 87-93. doi: 10.1515/bmc-2013-0039

3. Bisel B., Pavone F.S., Calamai M. GM1 and GM2 gangliosides: Recent developments. Biomol. Concepts. 2014; 5: 87-93. doi: 10.1515/bmc-2013-0039

4. Boutry M., Branchu J., Lustremant C. [et. al.]. Inhibition of Lysosome Membrane Recycling Causes Accumulation of Gangliosides that Contribute to Neurodegeneration. Cell Rep. 2018; 23(13): 3813-26. doi: 10.1016/j.celrep.2018.05.098

5. Cervin J., Wands A.M., Cesselbrant A. [et. al.]. GM1 ganglioside-independent intoxication by Cholera toxin. PLoS Pathog. 2018; 14(2): 1-30. doi: 10.1371/journal.ppat.1006862

6. Chiricozzi E., Pome D.Y., Maggioni M. [et. al.]. Role of the GM1 ganglioside oligosaccharide portion in the TrkA-dependent neurite sprouting in neuroblastoma cells. J. Neurochem. 2017; 143(6): 645-59. doi: 10.1111/jnc.14146

7. Chester, M.A. IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Nomenclature of glycolipids-recommendations 1997. Eur. J. Biochem. 1998; 257(2): 293-98. doi:10.1046/j.1432-1327.1998.2570293.x

8. Das S., Angsantikul P., Le C. [et. al.]. Neutralization of cholera toxin with nanoparticle decoys for treatment of cholera. PLoS Negl. Trop. Dis. 2018; 12(2): 1-17. doi: 10.1371/journal.pntd.0006266. (In English)

9. Hadaczeck P., Wu G., Sharma N. [et. al.]. GDNF signaling implemented by GM1 ganglioside; failure in Parkinson's disease and GM1- deficient murine model. Exp. Neurol. 2015; 263: 177-89. doi: 10.1016/j.expneurol.2014.10.010

10. Forsayeth J., Hadaczek P. Ganglioside Metabolism and Parkinson's Disease. Front Neurosci. 2018; 12(45): 1-8. doi: 10.3389/fnins.2018.00045

11. Ferrari G., Batistatou A., Greene L. A. Gangliosides rescue neuronal cells from death after trophic factor deprivation. J. of the Auton. Nerv. Sys. 1993; 43:75-76. doi:10.1016/0165-1838(93)90206-a

12. Ferrari G., Batistatou A., Greene L. A. Gangliosides rescue neuronal cells from death after trophic factor deprivation. J. of the Auton. Nerv. Sys. 1993; 43:75-76. doi:10.1016/0165-1838(93)90206-a

13. Fukuda Y., Fukui T., Hikichi C. [et. al.]. Neurotropin promotes NGF signaling through interaction of GM1ganglioside with Trk neurotrophin receptor in PC12 cells. Brain Res. 2018; 1596: 13-21. doi: 10.1016/j.brainres.2014.11.041

14. Haan, L.de., Hirst T.R. Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms (Review). Mol. Memb. Biol. 2004; 21(2):77-92. doi:10.1080/09687680410001663267

15. Itokazu Y., Wang J., Yu R.K. Gangliosides in Nerve Cell Specification. Prog. Mol. Biol. Transl. Sci. 2018; 156: 241-63. doi: 10.1016/bs.pmbts.2017.12.008

16. Ferrari G., Fabris M., Gorio A. Gangliosides enhance neurite outgrowth in PC12 cells. Devel. Brain Res. 1983; 8(2-3):215-221. doi:10.1016/0165-3806(83)90006-8

17. Kim C.S., Heo H.R., Seo J.H. [et. al.]. On-chip biosynthesis of GM1 pentasaccharide-related complex glycans. Chem. Commun. (Camb.). 2018; 55(1): 71-74. doi: 10.1039/c8cc06526h

18. Kolter T. Ganglioside biochemistry. ISRN Biochem. 2012; 5:1-36. doi:10.5402/2012/506160

19. Ledeen R.W., Wu G., Canella M.S. [et. al.]. Gangliosides as neurotrophic agents: studies on the mechanism of action. Acta Neurobiol. Exp. 1990; 50(4-5):439-49

20. Ledeen W.G., Wu G. The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem. Sci. 2015; 40(7): 407-18. doi: 10.1016/j.tibs.2015.04.005

21. Pruett S.M., Bushnev A., Hagedorn K. [et. al.]. Biodiversity of sphingoid bases (“sphingosines”) and related amino alcohols. J. Lipid research. 2008; 49(8):1621-1639. doi: 10.1194/jlr.R800012-JLR200

22. Roberts J., Hoeg J., Maral Mouradian M. [et al.]. Iatrogenic hyperlipidaemia with GM1 ganglioside. Lancet. 1993;342(8863):115. doi:10.1016/0140-6736(93)91316-e

23. Kowabara S., Yuki N. Axonal Guillain-Barré syndrome: concepts and controversies. Lancet Neurol. 2013; 12(12): 1180-8. doi: 10.1016/S1474-4422(13)70215-1

24. Pedavally S., Hermandes Z.M., Zeidman L.A. Fisher-Pharyngeal-Cervical-Brachial Overlap Syndrome With Novel Ganglioside Antibodies. J. Clin. Neuromuscul. Dis. 2018; 19(4): 224-27. doi: 10.1097/CND.0000000000000205

25. Roberts J., Hoeg J., Maral Mouradian M. [et al.]. Iatrogenic hyperlipidaemia with GM1 ganglioside. Lancet. 1993;342(8863):115. doi:10.1016/0140-6736(93)91316-e

26. Svennerholm, L. Chromatographic separation of human brain gangliosides. J. Neurochem. 1963; 10:613-23

27. Saito M., Saito M. Involvement of Sphingolipids in Ethanol Neurotoxicity in the Developing Brain. Brain Sci. 2013; 3(2): 670-703. doi: 10.3390/brainsci3020670. (In English).chneider J.S., Gollomp S.M., Sendek S. [et. al.] A randomized, controlled, delayed start trial of GM1 ganglioside in treated Parkinson's disease patients. J. Neurol. Sci. 2013; 1(324):140-148. doi:10.1016/j.jns.2012.10.024

28. Schneider J.S., Gollomp S.M., Sendek S. [et. al.] A randomized, controlled, delayed start trial of GM1 ganglioside in treated Parkinson's disease patients. J. Neurol. Sci. 2013; 1(324):140-148. doi:10.1016/j.jns.2012.10.024

29. Sonnino S., Chiricozzi E., Grassi S. [et. al.]. Gangliosides in Membrane Organization. Prog. Mol. Biol. Transl. Sci. 2018; 156: 83-120. doi: 10.1016/bs.pmbts.2017.12.007

30. Sokolova T.V., Rychkova M.P., Avrova N.F. Protective effect of GM1 ganglioside against toxic action of glutamate on cerebellar granule cells. Zh. Evol. Biokhim. Fiziol. 2014; 50(5): 399-401

31. Tuteja M., Bitchol A.M., Girisha K.M [et. al.]. White matter changes in GM1 gangliosidosis. Indian Pediatr. 2015; 52(2): 155-6

32. Thudichum, J. L. W. A treatise on the chemical constitution of the brain : based throughout upon original researches - London: Royal College of Physicians of London. 1884; Pages: 342

33. Wang Q., Song Y.H., Tang Z. [et. al.]. Effects of ganglioside GM1 and neural growth factor on neural stem cell proliferation and differentiation. Genet. Mol. Res. 2016; 15(3): 1-10. doi: 10.4238/gmr.15038376

34. Wang Z., Qie D., Zhou H. [et. al.]. Acute myelitis of children with positive anti-GM1 antibody: Case series and literature review. Medicine (Baltimore). 2018; 97(20): 1-5. doi: 10.1097/MD.0000000000010796

35. Willis C.J., Rezazadeh S.M., Lal H. GM1 ganglioside reduces ethanol intoxication and the development of ethanol dependence. Alcohol. 1995; 12(6): 573-80

36. Kreutz F., Scherer E.B. Ferreira A.G. [et. al.]. Alterations on Na ⁺-A,KT⁺Pase and acetylcholinesterase activities induced by amyloid-β peptide in rat brain and GM1 ganglioside neuroprotective action. Neurochem. Res. 2013; 38(11): 2342-50. doi: 10.1007/s11064-013- 1145-6 Wijdicks E.F., Klein C.J. Guillain-Barré Syndrome. Mayo Clin. Proc. 2017; 92(3): 467-79. doi: 10.1016/j.mayocp.2016.12.002


Review

For citations:


Mavlikhanova A.A., Pavlov V.N., Yang B., Kataev V.A., Wang N., Agletdinov E.F., Kang C.Y., Hu J. MONOSIALOGANGLIOSIDE GM1: STRUCTURE, ANTI-APOPTOTIC PROPERTIES AND NEUROPROTECTION. Bashkortostan Medical Journal. 2018;13(5):82-87. (In Russ.)

Views: 211


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-6209 (Print)