Preview

Bashkortostan Medical Journal

Advanced search

BIOENGINEERING EQUIVALENTS OF THE CORNEAL STROMA BASED ON THE COLLAGEN USE

Abstract

Purpose: search for keratoplasty materials alternative to donor cornea.Material and methods. To realize this aim the following materials were proposed: recombinant fibrillary collagens (collagenic hydrogels), collagenic sponges, collagenic films, modified collagenic gels.Results and discussion. There are two main directions of bioengineering in the creation of the artificial cornea. The first one is based on the creation of the artificial extracellular matrix and the second one is based on cellular technologies. When developing the models,collagenic hydrogels are more often implemented and earlier, collagenic sponges and films were used. The disadvantages of the collagenic matrices are their weak biomechanical properties which is reflected on the condition of the peripheral sutures in keratoplasty and accelerated enzymatic degradation after transplantation. Therefore, an additional chemical treatment is performed by crosslinkers which allows to strengthen the intercollagenic links and slow down the process of degradation and stromal remodeling. The corneal bioimplants are also obtained with the use of 3D bioprint method based on the existing 3D digital models of the human cornea.Conclusions. The proposed materials possess both positive properties (porous structure, transparency) and negative ones (weak biomechanical properties). In spite of the efforts of many researchers to create a transplantational material, it is impossible so far to completely replace the donor cornea.

About the Authors

R. Z. Kadyrov
ФГБУ «Всероссийский центр глазной и пластической хирургии» Минздрава России
Russian Federation


O. R. Shangina
ФГБУ «Всероссийский центр глазной и пластической хирургии» Минздрава России; ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Russian Federation


S. R. Gatiyatullina
ФГБУ «Всероссийский центр глазной и пластической хирургии» Минздрава России
Russian Federation


I. R. Karachurina
ФГБУ «Всероссийский центр глазной и пластической хирургии» Минздрава России
Russian Federation


G. I. Garipova
ФГБУ «Всероссийский центр глазной и пластической хирургии» Минздрава России
Russian Federation


References

1. Global survey of corneal transplantation and eye banking / P. Gain [et al.] // JAMA Ophthalmol. - 2016. - Vol. 134, № 2. - P. 167-173

2. Ruberti, J.W. Prelude to corneal tissue engineering - gaining control of collagen organization / J.W. Ruberti, J.D. Zieske // Prog. Retin Eye Res. - 2008. - Vol. 27, № 5. - P. 549-577

3. A simple, cross-linked collagen tissue substitute for corneal implantation / Y. Liu [et al.] // Invest. Ophthalmol. Vis. Sci. - 2006. - Vol. 47, № 5. - P. 1869-1875

4. Recombinant human collagen for tissue engineered corneal substitutes / W. Liu [et al.] // Biomaterials. - 2008. - Vol. 29, № 9. - P. 1147-1158

5. Innervation of tissue-engineered recombinant human collagen-based corneal substitutes: a comparative in vivo confocal microscopy study / N. Lagali [et al.] // Invest. Ophthalmol. Vis. Sci. - 2008. - Vol. 49, № 9. - P. 3895-3902

6. Innervation of tissue-engineered corneal implants in a porcine model: a 1-year in vivo confocal microscopy study / N.S. Lagali [et al.] // Invest. Ophthalmol. Vis. Sci. - 2007. - Vol. 48, № 8. - P. 3537-3544

7. A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study / P. Fagerholm [et al.] // Sci. Transl. Med. - 2010. - Vol. 2, № 46. - P. 46-61

8. Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold / P. Fagerholm [et al.] // Biomaterials. - 2014. - Vol. 35, № 8. - P. 2420-2427

9. D corneal shape after implantation of a biosynthetic corneal stromal substitute / J.A. Ong [et al.] // Invest. Ophthalmol. Vis. Sci. - 2016. - Vol. 57, № 6. - P. 2355-2365

10. Biosynthetic corneal implants for replacement of pathologic corneal tissue: performance in a controlled rabbit alkali burn model / J.M. Hackett [et al.] // Invest. Ophthalmol. Vis. Sci. - 2011. - Vol. 52, № 2. - P. 651-657

11. Tissue-engineered cornea constructed with compressed collagen and laser-perforated electrospun mat / B. Kong [et al.] // Sci. Rep. - 2017. - Vol. 7, № 1. - P. 970

12. Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication / I. Jun [et al.] // Int. J. Mol. Sci. - 2018. - Vol. 19, № 3. - P. 745

13. Isaacson, A. 3D bioprinting of a corneal stroma equivalent / A. Isaacson, S. Swioklo, C.G. Connon // Exp. Eye Res. - 2018. - № 173. - P. 188-193

14. The human cornea as a model tissue for additive biomanufacturing: a review / R. Gibney [et al.] // Proc. CIRP. - 2017. - № 65. - P. 56-63

15. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation / Z. Wu [et al.] // Scientific Reports. - 2016. - Vol. 6, № 1. - P. 24474

16. Orwin, E.J. In vitro culture characteristics of corneal epithelial endothelial and keratocyte cells in a native collagen matrix / E.J. Orwin, A. Hubel // Tissue Eng. - 2000. - Vol. 6, № 4. - P. 307-319

17. Orwin, E.J.. Biomechanical and optical characteristics of a corneal stromal equivalent / E.J..Orwin, M.L. Borene, A. Hubel // J. Biomech. Eng. - 2003. - Vol. 125, № 4. - P. 439-444

18. Borene, M.L. Mechanical and cellular changes during compaction of a collagen-sponge-based corneal stromal equivalent / M.L. Borene, V.H. Barocas, A. Hubel // Ann. Biomed. Eng. - 2004. - Vol. 32, № 2. - P. 274-283

19. Microstructural characteristics of extracellular matrix produced by stromal fibroblasts / R.A. Crabb [et al.] // Ann. Biomed. Eng. - 2006. - Vol. 34, № 10. - P. 1615-1627

20. Biomechanical and microstructural characteristics of a collagen film-based corneal stroma equivalent / R.A.B. Crabb [et al.] // Tissue Eng. - 2006. - Vol. 12, № 6. - P. 1565-1575

21. Crabb, R.A.B. Influence of matrix processing on the optical and biomechanical properties of a corneal stroma equivalent / R.A.B. Crabb, A. Hubel // Tissue Eng. Part A. - 2008. - Vol. 14, № 1. - P. 173-182

22. Enhanced regeneration of corneal tissue via a bioengineered collagen construct implanted by a nondisruptive surgical technique / M. Koulikovska [et al.] // Tissue Eng. Part A. - 2015. - Vol. 21, № 5-6. - P. 1116-1130

23. Study on biocompatibility of complexes of collagen-chitosan-sodium hyaluronate and cornea / J. Chen [et al.] // Artif. Organs. - 2005. - Vol. 29, № 2. - P. 104-113

24. Thurber, A.E. In vivo bioresponses to silk proteins / A.E. Thurber, F.G. Omenetto, D.L. Kaplan // Biomaterials. - 2015. - № 71. - P. 145-157

25. Use of magnetically oriented orthogonal collagen scaffolds for hemi-corneal reconstruction and regeneration / N. Builles [et al.] // Biomaterials. - 2010. - Vol. 31, № 32. - P. 8313-8322


Review

For citations:


Kadyrov R.Z., Shangina O.R., Gatiyatullina S.R., Karachurina I.R., Garipova G.I. BIOENGINEERING EQUIVALENTS OF THE CORNEAL STROMA BASED ON THE COLLAGEN USE. Bashkortostan Medical Journal. 2021;16(4):60-65. (In Russ.)

Views: 55


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-6209 (Print)