НОВАЯ КОРОНАВИРУСНАЯ ИНФЕКЦИЯ COVID-19: РОЛЬ ЖЕЛУДОЧНО-КИШЕЧНОГО ТРАКТА В ПАТОГЕНЕЗЕ ЗАБОЛЕВАНИЯ
Аннотация
Об авторах
А. К. РатниковаРоссия
В. Б. Гриневич
Россия
К. В. Козлов
Россия
Ю. А. Кравчук
Россия
М. М. Арапханова
Россия
В. А. Кащенко
Россия
В. А. Ратников
Россия
Список литературы
1. Kordzadeh-Kermani, E. Pathogenesis, clinical manifestations and complications of coronavirus disease 2019 (COVID-19) / E. Kordzadeh-Kermani, H. Khalili, I. Karimzadeh // Future Microbiol. - 2020. - Vol. 15, № 5. - P.1287-1305
2. World Health Organization. Coronavirus disease 2019 (COVID-19) situation report. Weekly epidemiological and operational updates [Electronic resource]. - 2021. URL: https://covid19.who.int/ (accessed 18.08.2021)
3. What GI physicians need to know during COVID-19 pandemic / P.J. Thuluvath [et al.] // Dig. Dis. Sci. - 2021. - Vol. 66, № 7.- P. 2865-2875.
4. A new coronavirus associated with human respiratory disease in China / F. Wu [et al.] // Nature. - 2020. - Vol. 579, № 1. - P. 265-269.
5. A pneumonia outbreak associated with a new coronavirus of probable bat origin / P. Zhou [et al.] // Nature - 2020. - Vol. 579, № 7798. - P. 270-273.
6. Microbiota might play a role in SARS-CoV-2 infection / Y. He [et al.] // Front. Microbiol. - 2020. - Vol. 11, № 1.- P. 1302.
7. Functional immune deficiency syndrome via intestinal infection in COVID-19 / E.T. Prates [et al.] // bioRxiv. - 2020.- P. 1-29.
8. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia / A.M. Zaki [et al.] // N. Engl. J. Med. - 2012. - Vol. 367, № 6.- P. 1814-1820.
9. Coronavirus (COVID-19) outbreak: what the department of endoscopy should know / A.Repici [et al.] // Gastrointest. Endosc. - 2020. - Vol. 92, № 1.- P. 192-197.
10. Neurath, M.F. COVID-19 and immunomodulation in IBD / M.F. Neurath // Gut. - 2020 - Vol. 69, № 7.- P. 1335-1342.
11. Особенности тромбоэластографического профиля пациентов с COVID-19 в условиях ОРИТ / А.В. Самородов [и др.] // Вестник анестезиологии и реаниматологии. - 2020. - Т. 17, № 6. - С. 39-44.
12. On the origin and continuing evolution of SARS-CoV-2 / X. Tang [et al.] // Natl. Sci. Rev. - 2020. - Vol. 7, № 6.- P. 1012-1023.
13. Genomewide association study of severe COVID-19 with respiratory failure / D. Ellinghaus [et al.] // N. Engl. J. Med. - 2020. - Vol. 383, № 5.- P. 1522-1534.
14. Presumed asymptomatic carrier transmission of COVID-19 / Y. Bai [et al.] // JAMA. - 2020. - Vol. 323, № 14.- P. 1406-1407.
15. Single-cell RNA-seq data analysis on the receptor ACE 2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection / X. Zou [et al.] // Front. Med. - 2020. - Vol. 14, № 1.- P. 185-192.
16. Structure analysis of the receptor binding of 2019-nCoV / Y. Chen [et al.] // Biochem. Biophys. Res.Commun. - 2020. - Vol. 525, № 1.- P. 135-140.
17. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor / M. Hoffmann [et al.] // Cell. - 2020. - Vol. 181, № 2.- P. 271-280.e8.
18. Expression of SARS-CoV-2 entry molecules ACE2 and TMPRSS2 in the gut of patients with IBD /j.F. Burgueсo [et al.] // Inflamm. Bowel. Dis. - 2020. - Vol. 26, № 4.- P. 797-808.
19. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation / D. Wrapp [et al.] // Science. - 2020. - Vol. 367, № 6483.- P. 1260-1263.
20. The anti-inflammatory potential of ACE 2/angiotensin-(1-7)/Mas receptor axis: evidence from basic and clinical research / T.R. Rodrigues Prestes [et al.] // Curr. Drug Targets. - 2017. - Vol. 18, № 11.- P. 1301-1313.
21. Tikellis, C. Angiotensin-converting enzyme 2 (ACE 2) is a key modulator of the renin angiotensin system in health and disease / C. Tikellis, M. Thomas // Int. J. Pept. - 2012: 256294.
22. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE 2 / M. Gheblawi [et al.] // Circ. Res. - 2020. - Vol. 126, № 10.- P. 1456-1474.
23. Pal, R. COVID-19, diabetes mellitus and ACE 2: the conundrum / R. Pal, A. Bhansali // Diabetes Res. Clin. Pract. - 2020. - Vol. 162.- P. 108132.
24. Endocrine and metabolic link to coronavirus infection / S.R. Bornstein [et al.] // Nat. Rev. Endocrinol. - 2020. - Vol. 16, № 6.- P. 297-298.
25. Single-cell RNA-seq data analysis on the receptor ACE 2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection / X. Zou [et al.] // Front. Med. - 2020. - Vol. 14, № 1.- P. 185-192.
26. Effect of gastrointestinal symptoms in patients with COVID-19 / Z. Zhou [et al.] // Gastroenterology. - 2020. - Vol. 158, № 8.- P. 2294.
27. Ahlawat, S. Immunological coordination between gut and lungs in SARS-CoV-2 infection / S. Ahlawat, Asha, K.K. Sharma // Virus Research. - 2020. - Vol. 286.- P. 198103.
28. Prevalence of gastrointestinal symptoms and fecal viral shedding in patients with Coronavirus Disease 2019 / S. Parasa [et al.] // JAMA. - 2020. - Vol. 3, № 6.- P. E2011335.
29. Wong, S.H. Covid-19 and the digestive system / S.H. Wong, R. Lui, J.J. Sung //j. Gastroenterol. Hepatol. - 2020. - Vol. 35, № 5.- P. 744-748.
30. A comparative study on the clinical features of Coronavirus 2019 (COVID-19) pneumonia with other pneumonias / D. Zhao [et al.] // Clin. Infect. Dis. - 2020. - Vol. 71, № 15.- P. 756-761.
31. Zhang, C. Liver injury in COVID-19: management and challenges / C. Zhang, L. Shi, F-S.Wang // Lancet Gastroenterol. Hepatol. - 2020. - Vol. 5, № 5.- P. 428-430.
32. SARS-associated viral hepatitis caused by a novel coronavirus: report of three cases / T-N. Chau [et al.] // Hepatology. - 2004. - Vol. 39, № 2.- P. 302-310.
33. Liver injury during highly pathogenic human coronavirus infections / L. Xu [et al.] // Liver Int. - 2020. - Vol. 40, № 5.- P. 998-1004.
34. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China / C. Wu [et al.] // JAMA Intern. Med. - 2020. - Vol. 180, № 7. - P. 934-943.
35. Ведение пациентов с заболеваниями органов пищеварения в период пандемии COVID-19: клинические рекомендации Российского научного медицинского общества терапевтов и Научного общества гастроэнтерологов России (2-е издание) / В.Б. Гриневич [и др.] // Экспериментальная и клиническая гастроэнтерология. - 2021. - № 3. - C. 5-82.
36. Rismanbaf, A. Liver and kidney injuries in COVID-19 and their effects on drug therapy; a letter to editor / A. Rismanbaf, S. Zarei // Arch. Acad. Emerg. Med. - 2020. - Vol. 8, № 1.- P. e17.
37. Gastrointestinal manifestations during COVID-19 virus infection: A Moroccan prospective study [Electronic resource] / T. Addajou [et al.] // Arab. J. Gastroenterol. - 2021. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321706/pdf/main.pdf (accessed 18.08.2021).
38. Lee J.S., Jeon, S.W., Lee, H.S. [et al.]. Rebamipide for the improvement of gastric atrophy and intestinal metaplasia: a prospective, randomized, pilot study. Dig Dis Sci. 2021 (in Engl.). doi: 10.1007/s10620-021-07038-7.
39. Haruma K., Ito M., Kido S. [et al.]. Long-term rebamipide therapy improves Helicobacter pylori-associated chronic gastritis. Dig Dis Sci. 2002;47:862-867 (in Engl.). doi: 10.1023/A:1014716822702.
40. Naito, Yu. Rebamipide: a gastrointestinal protective drug with pleiotropic activities / Yu. Naito, T. Yoshikawa // Exp. Rev. Gastroenterol. Hepatol. - 2010. - Vol. 4, № 3.- P. 261-270.
41. Новая коронавирусная инфекция (COVID-19) и система органов пищеварения / В.Т. Ивашкин [и др.]. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. - 2020. - Т. 30, № 3. - С. 7-13.
42. The absence of coronavirus in expressed prostatic secretion in COVID-19 patients in Wuhan city / S. Zhang [et al.] //Reprod. Toxicol. - 2020. - Vol. 96, № 1.- P. 90-94.
43. Single-cell RNA expression profiling of ACE 2, the receptor of SARS-CoV-2 / Y. Zhao [et al.] // Am. J. Resp. Crit. Care Med. - 2020. - Vol. 202, № 5.- P. 756-759.
44. Coronavirus disease 2019 (COVID-19) pandemic and pregnancy / P. Dashraath [et al.] //Am. J. Obstet. Gynecol. - 2020. - Vol. 222, № 6.- P. 521-531.
45. Bunyavanich, S. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults / S. Bunyavanich, A. Do, A. Vicencio // JAMA. - 2020. - Vol. 323, № 23.- P. 2427-2429.
46. Ong, J. COVID-19 in gastroenterology: a clinical perspective /j. Ong, B.E. Young, S. Ong // Gut. - 2020. - Vol. 69, № 6.- P. 1144- 1145.
47. Functional exhaustion of antiviral lymphocytes in COVID-19 patients / M. Zheng [et al.] // Cell. Mol. Immunol. - 2020. - Vol. 17, № 5. - P. 533-535.
48. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19) / B. Diao [et al.] // Front. Immunol. - 2020. - Vol. 11, № 7.- P. 827.
49. Creelan, B.C. The NKG2A immune checkpoint - a new direction in cancer immunotherapy / B.C. Creelan, S.J. Antonia // Nat. Rev. Clin. Oncol. - 2019. - Vol. 16, № 5.- P. 277-278.
50. PD-1/PD-L1 pathway: basic biology and role in cancer immunotherapy / A. Salmaninejad [et al.] //j. Cell. Physiol. - 2019. - Vol. 234, № 10.- P. 16824-16837.
51. Das, M. Tim-3 and its role in regulating anti-tumor immunity / M. Das, C. Zhu, V.K. Kuchroo // Immunol. Rev. - 2017. - Vol. 276, № 1.- P. 97-111.
52. Wang, W. The definition and risks of cytokine release syndrome-like in 11 COVID-19-infected pneumonia critically ill patients: disease characteristics and retrospective analysis / W. Wang, J. He, S. Wu //j. Infect. Dis. - 2020.
53. A rampage through the body / Wadman M. [et al.] // Science. - 2020. - Vol. 368, № 2.- P. 356-360.
54. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection / L. Lin [et al.] // Gut. - 2020. - Vol. 69, № 6.- P. 997-1001.
55. IL-6: relevance for immunopathology of SARS-CoV-2 / E.O. Gubernatorova [et al.] // Cytokine Growth Factor Rev. - 2020. - Vol. 53. - P. 13-24.
56. Merad, M. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages / M. Merad, J.C. Martin // Nat. Rev. Immunol. - 2020. - Vol. 20, № 2.- P. 355-362.
57. Neutrophil-to-Lymphocyte ratio predicts severe illness patients with 2019 novel coronavirus in the early stage / Liu J. [et al.] // medRxiv. - 2020. doi: 10.1101/2020.02.10.20021584.
58. Immunologic perturbations in severe COVID-19/SARS-CoV-2 infection / L. Kuri-Cervantes [et al.] // bioRxiv. - 2020. doi: 10.1101/2020.05.18.101717.
59. Immune phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID-19/ B. Zhang [et al.] // medRxiv. - 2020. doi: 10.1101/2020.03.12.20035048.
60. ACE 2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection / F. Liu [et al.] // Clin. Gastroenterol. Hepatol. - 2020. - Vol. 18, № 9.- P. 2128-2130.e2.
61. Evidence for gastrointestinal infection of SARS-CoV-2 / F. Xiao [et al.] // Gastroenterology. - 2020. - Vol. 158, № 8.- P. 1831.e3- 1833.e3.
62. Yeo, C. Enteric involvement of coronaviruses: is fecal-oral transmission of SARS-CoV-2 possible? / C. Yeo, S. Kaushal, D. Yeo // Lancet Gastroenterol. Hepatol. - 2020. - Vol. 5, № 2.- P. 335-337.
63. SARS-CoV-2-positive sputum and feces after conversion of pharyngeal samples in patients with COVID-19 / C. Chen [et al.] // Ann Intern Med. - 2020. - Vol. 172, № 12.- P. 832-834.
64. Клиника и семиотика поражения органов пищеварения при новой коронавирусной инфекции (COVID-19) / Н.Г. Кучеренко [и др.] // Экспериментальная и клиническая гастроэнтерология. - 2021. - № 2. - С. 20-26.
65. The presence of SARSCoV-2 RNA in feces of COVID-19 patients / Y. Chen [et al.] //j. Med. Virol. - 2020. - Vol. 92, № 7.- P.833- 840.
66. COVID-19 disease with positive fecal and negative pharyngeal and sputum viral tests / L. Chen [et al.] // Am. J. Gastroenterol. - 2020. - Vol. 115, № 5.- P. 790.
67. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore / B.E. Young [et al.] // JAMA. - 2020. - Vol. 323, № 7.- P. 1488-1494.
68. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from the Hong Kong cohort and systematic review and metaanalysis / K.S. Cheung [et al.] // Gastroenterol. - 2020. - Vol. 159, № 1.- P. 81-95.
69. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients / Y. Ling [et al.] // Chin. Med. J. (Engl). - 2020. - Vol. 133, № 5.- P. 1039-1043.
70. Ратникова, А.К. Гастроэнтерологические аспекты новой коронавирусной инфекции (COVID-19) / А.К. Ратникова, В.Б. Гриневич, Ю.А. Кравчук // Известия Российской Военно-медицинской академии. - 2021. - Т. 40, S. 2. - C. 136-138.
71. Ahlawat, S. Gut-organ axis: a microbial outreach and networking / S. Ahlawat, Asha, K.K. Sharma // Lett. Appl. Microbiol. - 2020. - Vol. 72, № 6.- P. 636-668.
72. Foster, J.A. Gut-brain axis: how the microbiome influences anxiety and depression /j.A. Foster, K.A.M. Neufeld // Trends Neurosci. - 2013. - Vol. 36, № 5.- P. 305-312.
73. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems / M. Carabotti [et al.] // Ann. Gastroenterol. - 2015. - Vol. 28, № 2.- P. 203-209.
74. Gut microbiota functions: metabolism of nutrients and other food components / I. Rowland [et al.] // Eur. J. Nutr. - 2017. - Vol. 57, № 1.- P. 1-24.
75. Microbial ecology along the gastrointestinal tract / E.T. Hillman [et al.] // Microbes Environ. - 2017. - Vol. 32, № 4.- P. 300-313.
76. Proctor, L. What’s next for the human microbiome? / L. Proctor // Nature. - 2019. - Vol. 569, № 3.- P. 623-625.
77. Baumgart, D.C. Inflammatory bowel disease: cause and immunobiology / D.C. Baumgart, S.R. Carding // Lancet. - 2007. - Vol. 369, № 8.- P. 1627-1640.
78. O’Hara, A.M. The gut flora as a forgotten organ / A.M. O’Hara, F. Shanahan // EMBO Rep. - 2006. - Vol. 7, № 7.- P. 688-693.
79. Перитонеальный канцероматоз: мировые научные школы и современное состояние вопроса / Ш.Х. Ганцев [и др.] // Креативная хирургия и онкология. - 2021. - Т. 11, № 1. - С. 85-91.
80. Host-gut microbiota metabolic interactions /j.K. Nicholson [et al.] // Science. - 2012. - Vol. 336, № 6086.- P. 1262-1267.
81. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases / H. Duboc [et al.] // Gut. - 2013. - Vol. 62, № 4.- P. 531-539.
82. Brüssow, H. Problems with the concept of gut microbiota dysbiosis / H. Brüssow // Microbial Biotech. - 2020. - Vol. 13, № 2.- P. 423- 434.
83. Gut-lung axis: the microbial contributions and clinical implications / Y. He [et al.] // Crit. Rev. Microbiol. - 2017. - Vol. 43, № 1.- P. 81-95.
84. Wypych, T.P. The influence of the microbiome on respiratory health / T.P. Wypych, L.C. Wickramasinghe, B.J. Marsland // Nat. Immunol. - 2019. - Vol. 20, № 10.- P. 1279-1290.
85. Dhar, D. Gut microbiota and Covid-19 - possible link and implications / D. Dhar, A. Mohanty // Virus Res. - 2020. - Vol. 285.- P. 198018.
86. Gao, Q.Y. 2019 novel coronavirus infection and gastrointestinal tract / Q.Y. Gao, Y.X. Chen, J.Y. Fang //j. Dig. Dis. - 2020. - Vol. 21, № 3.- P. 125-126.
87. Respiratory viral infection-induced microbiome alterations and secondary bacterial pneumonia / S. Hanada [et al.] // Front. Immunol. - 2018. - Vol. 9.- P. 2640.
88. Microbiota might play a role in SARS-CoV-2 infection / Y. He [et al.] // Front. Microbiol. - 2020. - Vol. 11. - P. 1302.
89. Особенности ведения коморбидных пациентов в период пандемии новой коронавирусной инфекции (COVID-19). Националь- ный консенсус 2020 / В.Б. Гриневич [и др.] // Кардиоваскулярная терапия и профилактика. - 2020. - Т. 19, №4: 2630.
90. Probiotics at war against viruses: what is missing from the picture? / S.K. Tiwari [et al.] // Front. Microbiol. - 2020. doi: 10.3389/fmicb.2020.01877.
91. Синдром повышенной эпителиальной проницаемости в клинической практике. Мультидисциплинарный национальный консенсус / В.И. Симаненков [и др.] // Кардиоваскулярная терапия и профилактика. - 2021. - Т.20, № 1: 2758.
92. Гемодинамические и метаболические нарушения в условиях HIPEC лечения интраперитонеально-диссеминированного рака яичников / М.В. Забелин [и др.] // Здравоохранение, образование и безопасность. - 2020. - № 4(24). - С. 7-17.
93. Забелин, М.В. Эффективность оздоровительно-рекреационной программы у работников медицинского учреждения / М.В. Забелин, А.С. Сафонов // Здравоохранение, образование и безопасность. - 2019. - № 3(19). - С. 17-26.
94. Langlois, M.R. Biological and clinical significance of haptoglobin polymorphism in humans / M.R. Langlois, J.R. Delanghe // Clin. Chem. - 1996. - Vol. 42, № 10.- P. 1589-600.
95. Sturgeon, C. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases / C. Sturgeon, A. Fasano // Tissue Barriers. - 2016. - Vol. 4, № 4. - P. e1251384.
96. Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2 / W. Kong [et al.] // Proc. Natl. Acad. Sci. USA. - 1997. - Vol. 94, № 10.- P. 8884-8889.
97. Fasano, A.Intestinal permeability and its regulation by zonulin: diagnostic and therapeutic implications / A. Fasano // Clinical Gastroenterol. Hepatol. - 2012. - Vol. 10, № 8.- P. 1096-1100.
Рецензия
Для цитирования:
Ратникова А.К., Гриневич В.Б., Козлов К.В., Кравчук Ю.А., Арапханова М.М., Кащенко В.А., Ратников В.А. НОВАЯ КОРОНАВИРУСНАЯ ИНФЕКЦИЯ COVID-19: РОЛЬ ЖЕЛУДОЧНО-КИШЕЧНОГО ТРАКТА В ПАТОГЕНЕЗЕ ЗАБОЛЕВАНИЯ. Медицинский вестник Башкортостана. 2021;16(5):63-76.
For citation:
Ratnikova A.K., Grinevich V.B., Kozlov K.V., Kravchuk Yu.A., Araphanova M.M., Kashchenko V.A., Ratnikov V.A. THE NEW CORONAVIRUS INFECTION COVID-19: THE ROLE OF THE GASTROINTESTINAL TRACT IN THE PATHOGENESIS OF THE DISEASE. Bashkortostan Medical Journal. 2021;16(5):63-76. (In Russ.)