THE ROLE OF EPIGENETIC FACTORS IN THE PATHOGENESIS OF UROLITHIASIS: FOCUS ON THE “CLAUDINS – MICRORNA” SYSTEM
Abstract
Urolithiasis is a multifactorial metabolic disease caused by the interaction of genetic and environmental factors. Today, the study of urolithiasis is a hot topic due to the steady increase in both incidence and prevalence, as well as the high recurrence rate of this disease. In urolithiasis, the majority of concrements are forming on the base of calcium salts. The study of the molecular and genetic aspects of hypercalciuria is a promising way to improve urolithiasis control. Claudins are the proteins of renal epithelium tight junctions that play an important role in the calcium reabsorption in kidney.
In this review, we describe actual worldwide data on the epigenetic regulation of kidney claudins activity via small noncoding RNAs and the perspectives of using “claudins – microRNA” system components for the urolithiasis targeted pharmacotherapy. The article contains information on the segment-specific expression of claudins in nephrons, claudinopathies associated with impaired calcium metabolism in the kidneys, tight junctions as dynamic equilibrium systems, microRNA biogenesis and principles of action, various therapeutic strategies using microRNAs.
About the Authors
S. V. PopovRussian Federation
A. S. Ulitina
Russian Federation
R. G. Guseinov
Russian Federation
K. V. Sivak
Russian Federation
V. V. Perepelitsa
Russian Federation
K. A. Nadein
Russian Federation
N. S. Bunenkov
Russian Federation
References
1. Zubkov I.V. [et al] Epidemiology of urolithiasis and results of a pilot study on the use of extracorporeal shock wave lithotripsy. RMJ. 2021;29(8):7-10. (In Russ.) (Zubkov I.V. [et al] Epidemiology of urolithiasis and results of a pilot study on the use of fibrocalicolithotripsy. RMJ. 2021;29(8):7-10).
2. Vasudevan V. [et al.] Genetic basis for the development of nephrolithiasis. Asian J Urol. 2017;4(1):18-26. doi: 10.1016/j.ajur.2016.11.003.
3. Gadzhiev N. [et al] Prevalence of urolithiasis in the Russian Federation: an analysis of trends over a 15-year period. World J Urol. 2021;39(10):3939-3944. doi: 10.1007/s00345-021-03729-y.
4. Lang J. [et al.] Global trends in the incidence and burden of urolithiasis from 1990 to 2019: an analysis of data from the Global Burden of Disease Study. Eur Urol Open Sci. 2022;35:37-46. doi: 10.1016/j.euros.2021.10.008.
5. Kalabekov AA, Kazachenko AV, Ivashchenko VV. Risk factors of calcium and urate nephrolithiasis. The role of tubular dysfunction in stone formation. Jeksperimental'naja i klinicheskaja urologija. 2016;1:8-15. (In Russ.) (Kalabekov A.A., Kazachenko A.V., Ivashchenko V.V. Calcium and urate nephrolithiasis risk factors. The role of tubular dysfunction in stone formation. Experimental and Clinical Urology. 2016;1:8-15).
6. Spivacow F.R. [et al.] Kidney stones: composition, frequency, and relationship to metabolic diagnosis. Medicina (B Aires). 2016;76(6):343-348.
7. Tostivint I.N. [et al] How useful is the oral calcium load test for the diagnosis of recurrent calcium stone formation? Urolithiasis. 2022;50(5):577-587. doi: 10.1007/s00240-022-01355-w.
8. Iskenderov B.G. Arterial hypertension and calcium metabolism. Penza: NPO «Professional». 2010; 224 с. (In Russian) (Iskenderov B.G. Arterial hypertension and calcium metabolism. Penza : NPO Professional. 2010; 224 с.).
9. Zverev Y.F. [et al] The role of kidneys in maintaining calcium and magnesium homeostasis and its disorders (Part I). Nefrologija i dializ. 2018;20(2):150-169. (In Russ.) (Zverev Y.F. [et al] The role of the kidneys in maintaining calcium and magnesium homeostasis and in its disorders (Part I). Nephrology and dialysis. 2018;20(2):150-169). doi: 10.28996/2618-9801-2018-2-150-169.
10. Parshina E.V. Renal tubular calcium transport, physiology and clinical significance: terra «cognita». Nefrologija i dializ. 2020;22(2):170-180. (In Russ.) (Parshina E.V. Tubular calcium transport in the kidneys, physiology and clinical significance: terra «cognita». Nephrology and dialysis. 2020;22(2):170-180). doi: 10.28996/2618-9801-2020-2-170-180.
11. Eftekhari A. [et al.] Cell junction proteins: crossing the glomerular filtration barrier in diabetic nephropathy. Int J Biol Macromol. 2020;148:475–482. doi: 10.1016/j.ijbiomac.2020.01.168.
12. Moor M.B., Bonny O. Ways of calcium reabsorption in the kidney. Am J Physiol Renal Physiol. 2016;310(11):F1337–F1350. doi: 10.1152/ajprenal.00273.2015.
13. Farquhar M.G., Palade G.E. Junctional complexes in various epithelia. J Cell Biol. 1963;17(2):375–412. doi: 10.1083/jcb.17.2.375.
14. Prot-Bertoye C., Houillier P. Claudins in renal physiology and pathology. Genes (Basel). 2020;11(3):290. doi: 10.3390/genes11030290.
15. Markov A.G. Claudins as tight junction proteins: the molecular element of paracellular transport. Rossijskij fiziologicheskij zhurnal im. I.M. Sechenova. 2013;99(2):175-195.(In Russ.) (Markov A.G. Claudin tight junction proteins: a molecular element of paracellular transport. I. M. Sechenov Russian Journal of Physiology. I.M. Sechenov. 2013;99(2):175-195).
16. Furuse M. [et al.] Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol. 1998;141(7):1539–1550. doi: 10.1083/jcb.141.7.1539.
17. Taylor A. [et al.] Chimeric claudins: a new tool to study tight junction structure and function. Int J Mol Sci. 2021;22(9):4947. doi: 10.3390/ijms22094947.
18. Milatz S. A novel claudinopathy based on claudin-10 mutations. Int J Mol Sci. 2019;20(21):5396. doi: 10.3390/ijms20215396.
19. Fromm M. [et al.] Tight junctions of the proximal tubule and their channel proteins. Pflugers Arch. 2017;469(7–8):877–887. doi: 10.1007/s00424-017-2001-3.
20. Rubashkin A.A. [et al.] A theory of charge selectivity reversal in cationor anion-selective tight junctions between epithelial cells: a nonlocal electrostatic approach. Biophysics. 2021;66(1):84–90. doi: 10.1134/S0006350921010127.
21. Muto S. Physiological roles of claudins in kidney tubule paracellular transport. Am J Physiol Renal Physiol. 2017;312(1):F9–F24. doi: 10.1152/ajprenal.00204.2016.
22. Van Itallie C.M., Anderson J.M. The molecular physiology of tight junction pores. Physiology (Bethesda). 2004;19:331–338. doi: 10.1152/physiol.00027.2004.
23. Suzuki H. [et al.] Model for the architecture of claudin-based paracellular ion channels through tight junctions. J Mol Biol. 2015;427(2):291–297. doi: 10.1016/j.jmb.2014.10.020.
24. Heinemann U., Schuetz A. Structural Features of Tight-Junction Proteins. Int J Mol Sci. 2019;20(23):6020. doi: 10.3390/ijms20236020.
25. Tsukita S., Tanaka H., Tamura A. The claudins: from tight junctions to biological systems. Trends Biochem Sci. 2019;44(2):141–152. doi: 10.1016/j.tibs.2018.09.008.
26. Pyatchenkov M.O., Markov A.G., Rumyantsev A.Sh. Structural and functional intestinal barrier abnormalities and chronic kidney disease. Literature review. Part I. Nefrologija. 2022;26(1):10-26. (In Russ.) (Pyatchenkov M.O., Markov A.G., Rumyantsev A.Sh. Structural and functional disorders of intestinal barrier and chronic kidney disease. A review of the literature. Part I. Nephrology. 2022;26(1):1026). doi: 10.36485/1561-6274-2022-26-1-10-26.
27. Jo C.H., Kim S., Kim G.H. Claudins in kidney health and disease. Kidney Res Clin Pract. 2022;41(3):275–287. doi: 10.23876/j.krcp.21.279.
28. Yu A.S. Claudins and the kidney. J Am Soc Nephrol. 2015;26(1):11–19. doi: 10.1681/ASN.2014030284.
29. Plain A., Alexander R.T. Claudins and nephrolithiasis. Curr Opin Nephrol Hypertens. 2018;27(4):268–276. doi: 10.1097/MNH.0000000000000426.
30. Curry J.N. [et al.] Claudin-2 deficiency associates with hypercalciuria in mice and human kidney stone disease. J Clin Invest. 2020;130(4):1948–1960. doi: 10.1172/JCI127750.
31. Walsh S.V., Hopkins A.M., Nusrat A. Modulation of tight junction structure and function by cytokines. Adv Drug Deliv Rev. 2000;41(3):303–313. doi: 10.1016/s0169-409x(00)00048-x.
32. Soler A.P., Laughlin K.V., Mullin J.M. Effects of epidermal growth factor versus phorbol ester on kidney epithelial (LLC-PK1) tight junction permeability and cell division. Exp Cell Res. 1993;207(2):398–406. doi: 10.1006/excr.1993.1207.
33. Huang X. [et al.] Nanotopography enhances dynamic remodeling of tight junction proteins through cytosolic liquid complexes. ACS Nano. 2020;14(10):13192–13202. doi: 10.1021/acsnano.0c04866.
34. Sugimoto K., Chiba H. The claudin-transcription factor signaling pathway. Tissue Barriers. 2021;9(3):1908109. doi: 10.1080/21688370.2021.1908109.
35. Zhang L., Lu Q., Chang C. Epigenetics in Health and Disease. Adv Exp Med Biol. 2020;1253:3–55. doi: 10.1007/978-981-15-3449-2_1.
36. Lander E.S. [et al.] Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. doi: 10.1038/35057062.
37. Xue Y., Chen R., Qu L., Cao X. Noncoding RNA: from dark matter to bright star. Sci China Life Sci. 2020;63(4):463–468. doi: 10.1007/s11427-020-1676-5.
38. Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–854. doi: 10.1016/0092-8674(93)90529-y.
39. Alles J. [et al.] An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019;47(7):3353–3364. doi: 10.1093/nar/gkz097.
40. Pritchard C.C., Cheng H.H., Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012;13(5):358–369. doi: 10.1038/nrg3198.
41. Desvignes T. [et al.] miRNA nomenclature: a view incorporating genetic origins, biosynthetic pathways, and sequence variants. Trends Genet. 2015;31(11):613–626. doi: 10.1016/j.tig.2015.09.002.
42. Matsuyama H., Suzuki H.I. Systems and synthetic microRNA biology: from biogenesis to disease pathogenesis. Int J Mol Sci. 2019;21(1):132. doi: 10.3390/ijms21010132.
43. Saliminejad K. [et al.] An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234(5):5451–5465. doi: 10.1002/jcp.27486.
44. Lee C.H. [et al.] MicroRNA-regulated protein-protein interaction networks and their functions in breast cancer. Int J Mol Sci. 2013;14(6):11560–11606. doi: 10.3390/ijms140611560.
45. Riffo-Campos Á.L., Riquelme I., Brebi-Mieville P. Tools for sequence-based miRNA target prediction: what to choose? Int J Mol Sci. 2016;17(12):1987. doi: 10.3390/ijms17121987.
46. Tafrihi M., Hasheminasab E. MiRNAs: biology, biogenesis, their web-based tools, and databases. Microrna. 2019;8(1):4–27. doi: 10.2174/2211536607666180827111633.
47. Baker M.A. [et al.] Tissue-specific microRNA expression patterns in four types of kidney disease. J Am Soc Nephrol. 2017;28(10):2985–2992. doi: 10.1681/ASN.2016121280.
48. Winter J. [et al.] Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11(3):228–234. doi: 10.1038/ncb0309-228.
49. Liang X. [et al.] LncRNA-miRNA-mRNA expression variation profile in the urine of calcium oxalate stone patients. BMC Med Genomics. 2019;12(1):57. doi: 10.1186/s12920-019-0502-y.
50. Wang B. [et al.] Analysis of altered microRNA expression profiles in proximal renal tubular cells in response to calcium oxalate monohydrate crystal adhesion: implications for kidney stone disease. PLoS One. 2014;9(7):e101306. doi: 10.1371/journal.pone.0101306.
51. Lu Y. [et al.] Integrative microRNA-gene expression network analysis in genetic hypercalciuric stone-forming rat kidney. PeerJ. 2016;4:e1884. doi: 10.7717/peerj.1884.
52. Lan C. [et al.] Integrative analysis of miRNA and mRNA expression profiles in calcium oxalate nephrolithiasis rat model. Biomed Res Int. 2017;2017:8306736. doi: 10.1155/2017/8306736.
53. Kriegel A.J., Mladinov D., Liang M. Translational study of microRNAs and its application in kidney disease and hypertension research. Clin Sci (Lond). 2012;122(10):439–447. doi: 10.1042/CS20110159.
54. D'Agata R., Spoto G. Advanced methods for microRNA biosensing: a problem-solving perspective. Anal Bioanal Chem. 2019;411(19):4425–4444. doi: 10.1007/s00216-019-01621-8.
55. Gong Y. [et al.] Epigenetic regulation of microRNAs controlling CLDN14 expression as a mechanism for renal calcium handling. J Am Soc Nephrol. 2015;26(3):663–676. doi: 10.1681/ASN.2014020129.
56. Gong Y., Hou J. Claudin-14 underlies Ca⁺⁺-sensing receptor-mediated Ca⁺⁺ metabolism via NFAT-microRNA-based mechanisms. J Am Soc Nephrol. 2014;25(4):745–760. doi: 10.1681/ASN.2013050553.
57. Hou J. Claudins and mineral metabolism. Curr Opin Nephrol Hypertens. 2016;25(4):308–313. doi: 10.1097/MNH.0000000000000239.
58. Hawkshaw N.J., Paus R. Beyond the NFAT Horizon: from cyclosporine A-induced adverse skin effects to novel therapeutics. Trends Pharmacol Sci. 2021;42(5):316–328. doi: 10.1016/j.tips.2021.02.001.
59. Gong Y. [et al.] Claudin-14 regulates renal Ca⁺⁺ transport in response to CaSR signalling via a novel microRNA pathway. EMBO J. 2012;31(8):1999–2012. doi: 10.1038/emboj.2012.49.
60. Dimke H. [et al.] Activation of the Ca(2+)-sensing receptor increases renal claudin-14 expression and urinary Ca(2+) excretion. Am J Physiol Renal Physiol. 2013;304(6):F761–F769. doi: 10.1152/ajprenal.00263.2012.
61. Hou J. Lecture: new light on the role of claudins in the kidney. Organogenesis. 2012;8(1):1–9. doi: 10.4161/org.19808.
62. Negri A.L. Role of claudins in renal calcium handling. Nefrologia. 2015;35(4):347–352. English, Spanish. doi: 10.1016/j.nefro.2015.06.011.
63. Negri A.L., Del Valle E.E. Role of claudins in idiopathic hypercalciuria and renal lithiasis. Int Urol Nephrol. 2022;54(9):2197–2204. doi: 10.1007/s11255-022-03119-2.
64. McDermott A.M. [et al.] The therapeutic potential of microRNAs: disease modulators and drug targets. Pharm Res. 2011;28(12):3016– 3029. doi: 10.1007/s11095-011-0550-2.
65. Zhao X. [et al.] Tight junctions and their regulation by non-coding RNAs. Int J Biol Sci. 2021;17(3):712–727. doi: 10.7150/ijbs.45885.
66. Beermann J. [et al.] Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev. 2016;96(4):1297–1325. doi: 10.1152/physrev.00041.2015.
67. Bernardo B.C. [et al.] miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Med Chem. 2015;7(13):1771–1792. doi: 10.4155/fmc.15.107.
68. George J., Patel T. Noncoding RNA as therapeutic targets for hepatocellular carcinoma. Semin Liver Dis. 2015;35(1):63–74. doi: 10.1055/s-0034-1397350.
69. Beyer S., Fleming J., Meng W. et al. The role of miRNAs in angiogenesis, invasion and metabolism and their therapeutic implications in gliomas. Cancers (Basel). 2017;9(7):85. doi: 10.3390/cancers9070085.
70. Chen Z. [et al.] Pioglitazone decreased renal calcium oxalate crystal formation by suppressing M1 macrophage polarization via the PPAR-γ-miR-23 axis. Am J Physiol Renal Physiol. 2019;317(1):F137–F151. doi: 10.1152/ajprenal.00047.2019.
71. Brunner J., Ragupathy S., Borchard G. Target specific tight junction modulators. Adv Drug Deliv Rev. 2021;171:266–288. doi: 10.1016/j.addr.2021.02.008.
72. Hashimoto Y. [et al.] Anti-claudin antibodies as a concept for development of claudin-directed drugs. J Pharmacol Exp Ther. 2019;368(2):179–186. doi: 10.1124/jpet.118.252361.
73. Singh P., Toom S., Huang Y. Anti-claudin 18.2 antibody as new targeted therapy for advanced gastric cancer. J Hematol Oncol. 2017;10(1):105. doi: 10.1186/s13045-017-0473-4.
74. Li J. Targeting claudins in cancer: diagnosis, prognosis and therapy. Am J Cancer Res. 2021;11(7):3406–3424.
75. Wang X. [et al.] Claudin 18.2 is a potential therapeutic target for zolbetuximab in pancreatic ductal adenocarcinoma. World J Gastrointest Oncol. 2022;14(7):1252–1264. doi: 10.4251/wjgo.v14.i7.1252.
76. Wong Y. [et al.] Metabolic syndrome and kidney stone disease: a systematic review of literature. J Endourol. 2016;30(3):246–253. doi: 10.1089/end.2015.0567.
77. Gajiyev N.K. [et al] Urolithiasis and metabolic syndrome. Pathophysiology of stone formation. Jeksperimental'naja i klinicheskaja urologija. 2018;1:66-75. (In Russ.) (Gadzhiev N.K. [et al] Urolithiasis and metabolic syndrome. Pathophysiology of stone formation. Experimental and clinical urology. 2018;1:66-75).
78. Derkach I.A. The role of the intestine in the development of urolithiasis. Novosti mediciny i farmacii. 2015;1(527):33-37. (In Russ.) (Derkach I.A. Significance of the intestine in the development of urolithiasis. Novosti medicina i farmacii [News of medicine and pharmacy]. 2015;1(527):33-37).
79. Kazmirchuk A.V. [et al] The role of immune status and redox potential in the pathogenesis of secondary pyelonephritis against urolithiasis. Sovremennye problemy nauki i obrazovanija. 2016;3:65. (In Russ.) (Kazmirchuk A.V. [et al] The role of immune status and redox potential in the pathogenesis of secondary pyelonephritis at urolithiasis. Modern problems of science and education. 2016;3:65).
80. Saenko VS, Pesegov SV Interdisciplinary approach for the prevention of recurrent urolithiasis. Urologija. 2020;5:87-92. (In Russ.) (Sayenko V.S., Pesegov S.V. Interdisciplinary approach to the prevention of recurrent urolithiasis. Urology. 2020;5:87-92). doi: 10.18565/urology.2020.5.87-92.
81. Fu X., Dong D. Bioinformatic analysis of microRNA sequencing data. Methods Mol Biol. 2018;1751:109-125. doi: 10.1007/978-14939-7710-9_8.
Review
For citations:
Popov S.V., Ulitina A.S., Guseinov R.G., Sivak K.V., Perepelitsa V.V., Nadein K.A., Bunenkov N.S. THE ROLE OF EPIGENETIC FACTORS IN THE PATHOGENESIS OF UROLITHIASIS: FOCUS ON THE “CLAUDINS – MICRORNA” SYSTEM. Bashkortostan Medical Journal. 2023;18(1):79-92. (In Russ.)