MODERN METHODS OF SHORT BOWEL SYNDROME TREATMENT
Abstract
Short bowel syndrome (SBS) is a pathological condition that occurs due to a lack of functionally active intestinal epithelium due to congenital absence or subsequent loss of part of it, often resulting from massive surgical resection of the small intestine, which leads to chronic intestinal insufficiency, manifested by malabsorption, maldigestion, malnourishment and homeostasis disorders leading to high disability and mortality.
Among other things, the presence of patients on parenteral feeding entails economic losses (according to various estimates, over 200 thousand rubles per month), including those associated with regular replacement of port systems, purchase and storage of food. High mortality rate remains due to liver failure and catheter-associated sepsis. Among surgical interventions for SBS, operations to reduce intestinal transit and operations to increase the length of the intestine are carried out, as well as transplantation techniques. However, all of them have a number of significant disadvantages, such as a small percentage of restoration of full enteral nutrition, high frequency of postoperative and fatal outcomes, expensive transplantation techniques, surgical manipulations and lifelong immunosuppressive therapy.
Methods of intestinal repair in SBS at the present stage, including tissue engineering techniques, have been analyzed. A promising area is tissue engineering of the small intestine, which is an innovative method of treating patients with SBS.
About the Authors
I. M. NasibullinRussian Federation
R. R. Khasanov
Germany
V. N. Pavlov
Russian Federation
I. Sh. Akhatov
Russian Federation
A. A. Bakirov
Russian Federation
O. R. Shangina
Russian Federation
A. I. Lebedeva
Russian Federation
K. V. Danilko
Russian Federation
S. V. Pyatnitskaya
Russian Federation
T. I. Bikkuzin
Russian Federation
I. A. Khaziev
Russian Federation
V. A. Markelov
Russian Federation
A. A. Zainullin
Russian Federation
D. I. Khalilov
Russian Federation
References
1. Ladefoged K, Jarnum S. Long-term parenteral nutrition. Br Med J. 1978 Jul 22;2 (6132):262-6. doi: 10.1136/bmj.2.6132.262. PMID: 98199; PMCID: PMC1606366.
2. M.E. McMellen, D. Wakeman, S.W. Longshore, L.A. McDuffie, B.W. Warner, Growth factors: possible roles for clinical management of the short bowel syndrome, Semin. Pediatr. Surg. 19 (1) (2010) 35–43.
3. Dianjun Qi, Wen Shi, Adrian R. Black, Mitchell A. Kuss, Xining Pang, Yini He, Bing Liu, Bin Duan, Repair and regeneration of small intestine: A review of current engineering approaches, Biomaterials.
4. P.B. Jeppesen, Pharmacologic options for intestinal rehabilitation in patients with short bowel syndrome, JPEN, J. Parenter. Enteral Nutr. 38 (1 Suppl) (2014) 45S–52S.
5. T. Nakamura, T. Sato, Advancing intestinal organoid technology toward regenerative medicine, Cell. Molecul. Gastroenterol. Hepatol. 5 (1) (2017) 51–60.
6. R.H. Dosh, A. Essa, N. Jordan-Mahy, C. Sammon, C.L. Le Maitre, Use of hydrogel scaffolds to develop an in vitro 3D culture model of human intestinal epithelium, Acta Biomater. 62 (2017) 128–143.
7. S. Ogaki, N. Shiraki, K. Kume, S. Kume, Wnt and Notch signals guide embryonic stem cell differentiation into the intestinal lineages, Stem Cell. 31 (6) (2013) 1086–1096.
8. C.L. Watson, M.M. Mahe, J. Munera, J.C. Howell, N. Sundaram, H.M. Poling,J.I. Schweitzer, J.E. Vallance, C.N. Mayhew, Y. Sun, G. Grabowski,S.R. Finkbeiner, J.R. Spence, N.F. Shroyer, J.M. Wells, M.A. Helmrath, An in vivo model of human small intestine using pluripotent stem cells, Nat. Med. 20 (11) (2014) 1310–1314.
9. Liu Y, Wang Y, Chakroff J, et al. Production of Tissue-Engineered Small Intestine in Rats with Different Ages of Cell Donors. Tissue engineering. Part A. 2019 Jun; 25(11-12):878-886. DOI: 10.1089/ten.tea.2018.0226. PMID: 30284958; PMCID: PMC6590728.
10. Brevini TA, Gandolfi F. Parthenotes as a source of embryonic stem cells. Cell Prolif. 2008 Feb; 41 Suppl 1(Suppl 1):20-30. doi: 10.1111/j.1365-2184.2008.00485.x. PMID: 18181942; PMCID: PMC6496533.
11. Devineni, S. Tohme, M.T. Kody, R.A. Cowley, B.T. Harris, Stepping back to move forward: a current review of iPSCs in the fight against Alzheimer's disease, Am. J. Stem Cell. 5 (3) (2016) 99–106.
12. K.M. Gomes, I.C. Costa, J.F. Santos, P.M. Dourado, M.F. Forni, J.C. Ferreira, Induced pluripotent stem cells reprogramming: epigenetics and applications in the regenerative medicine, Rev. Assoc. Med. Bras. 63 (2) (2017) 180–189.
13. T. Kabeya, W. Matsumura, T. Iwao, M. Hosokawa, T. Matsunaga, Functional analysis of carboxylesterase in human induced pluripotent stem cell-derived enterocytes, Biochem. Biophys. Res. Commun. 486 (1) (2017) 143–148.
14. N. Kodama, T. Iwao, T. Kabeya, T. Horikawa, T. Niwa, Y. Kondo, K. Nakamura, T. Matsunaga, Inhibition of mitogen-activated protein kinase kinase, DNA methyltransferase, and transforming growth factor-beta promotes differentiation of human induced pluripotent stem cells into enterocytes, Drug Metabol. Pharmacokinet. 31 (3) (2016) 193–200.
15. M.A. Lancaster, J.A. Knoblich, Organogenesis in a dish: modeling development and disease using organoid technologies, Science 345 (6194) (2014) 1247125.
16. Y. Tan, S. Ooi, L.S. Wang, Immunogenicity and tumorigenicity of pluripotent stem cells and their derivatives: genetic and epigenetic perspectives, Curr. Stem Cell Res. Ther. 9 (1) (2014) 63–72.
17. J.R. Spence, C.N. Mayhew, S.A. Rankin, M.F. Kuhar, J.E. Vallance, K. Tolle, E.E. Hoskins, V.V. Kalinichenko, S.I. Wells, A.M. Zorn, N.F. Shroyer, J.M. Wells, Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro, Nature 470 (7332) (2011) 105–U120.9.
18. J. Wang, P. Cen, J. Chen, L. Fan, J. Li, H. Cao, L. Li, Role of mesenchymal stem cells, their derived factors, and extracellular vesicles in liver failure, Stem Cell Res. Ther. 8 (1) (2017) 137.
19. Ullah, R.B. Subbarao, G.J. Rho, Human mesenchymal stem cells - current trends and future prospective, Biosci. Rep. 35 (2) (2015).
20. N. Bhardwaj, S.C. Kundu, Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends, Biomaterials 33 (10) (2012) 2848–2857.
21. S. Chen, G. Cui, C. Peng, M.F. Lavin, X. Sun, E. Zhang, Y. Yang, Y. Guan, Z. Du, H. Shao, Transplantation of adipose-derived mesenchymal stem cells attenuates pulmonary fibrosis of silicosis via anti-inflammatory and anti-apoptosis effects in rats, Stem Cell Res. Ther. 9 (1) (2018) 110.
22. P.N. Tasli, B.T. Bozkurt, O.K. Kirbas, A.A. Deniz-Hizli, F. Sahin, Immunomodulatory behavior of mesenchymal stem cells, Adv. Exp. Med. Biol. 1119 (2018) 73–84.
23. Y. Hayashi, S. Tsuji, M. Tsujii, T. Nishida, S. Ishii, H. Iijima, T. Nakamura, H. Eguchi, E. Miyoshi, N. Hayashi, S. Kawano, Topical implantation of mesenchymal stem cells has beneficial effects on healing of experimental colitis in rats, J. Pharmacol. Exp. Therapeut. 326 (2) (2008) 523–531.
24. M. Duijvestein, A.C.W. Vos, H. Roelofs, M.E. Wildenberg, B.B. Wendrich, H.W. Verspaget, E.M.C. Kooy-Winkelaar, F. Koning, J.J. Zwaginga, H.H. Fidder, A.P. Verhaar, W.E. Fibbe, G.R. van den Brink, D.W. Hommes, Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn's disease: results of a phase I study, Gut 59 (12) (2010) 1662–1669.
25. G.M. Forbes, M.J. Sturm, R.W. Leong, M.P. Sparrow, D. Segarajasingam, A.G. Cummins, M. Phillips, R.P. Herrmann, A phase 2 study of allogeneic mesenchymal stromal cells for luminal crohn's disease refractory to biologic therapy, Clin. Gastroenterol. Hepatol. 12 (1) (2014) 64–71.
26. Li T, Xia M, Gao Y, Chen Y, Xu Y. Human umbilical cord mesenchymal stem cells: an overview of their potential in cell-based therapy. Expert Opin Biol Ther. 2015; 15(9): 1293-306. doi: 10.1517/14712598.2015.1051528. Epub 2015 Jun 12. PMID: 26067213.
27. Wang L, Mei Q, Xie Q, Li H, Su P, Zhang L, Li K, Ma D, Chen G, Li J, Xiang W. A comparative study of Mesenchymal Stem Cells transplantation approach to antagonize age-associated ovarian hypofunction with consideration of safety and efficiency. J Adv Res. 2021 Sep 6;38:245-259. doi: 10.1016/j.jare.2021.09.001. PMID: 35572405; PMCID: PMC9091735.
28. R. Hernández, C. Jiménez-Luna, J. Perales-Adán, G. Perazzoli, C. Melguizo, J. Prados. Differentiation of Human Mesenchymal Stem Cells towards Neuronal Lineage: Clinical Trials in Nervous System Disorders. Biomolecules & Therapeutics. Biomol Their 28(1), (2020). 34-44.
29. Pavlov, V.N. Surgical treatment of kidney wounds using allografts / Nigmatullin R.T., Nasibullin I.M., Nasibullina G.M. // Medical Bulletin of Bashkortostan. ‒ 2014. Vol.9, No. 5. ‒ pp. 149-152.
30. Nasibullin, I.M. Regeneration of renal parenchyma in surgical treatment by using allografts / Pavlov V.N., Nigmatullin R.T., Mustafin A.T., Zyryanov A.V., Pushkarev A.M., Galimzyanov V.Z., Nasibullina G.M. // Medical Bulletin of Bashkortostan. ‒ 2011. Vol.6, No. 6. ‒ pp. 112-114.
31. Method of surgical treatment of kidney wounds / E.R. Muldashev, R.T. Nigmatullin, R.A. Khasanov, V.N. Pavlov, I.M. Nasibullin [et al.] // Patent of the Russian Federation for invention RU 2354305C1 dated 05/10/2009.
32. Moesch M, Usemann J, Bruder E, Romero P, Schwab C, Niesler B, Tapia-Laliena MA, Khasanov R, Nisar T; Study Group NIG Retro; Holland-Cunz S, Keck S. Associations of Mucosal Nerve Fiber Innervation Density with Hirschsprung-Associated Enterocolitis: A Retrospective Three-Center Cohort Study. Eur J Pediatr Surg. 2023 Aug;33(4):299-309. doi: 10.1055/a-1889-6355. Epub 2022 Jul 1. PMID: 35777734.
33. Khasanov R, Svoboda D, Tapia-Laliena MÁ, Kohl M, Maas-Omlor S, Hagl CI, Wessel LM, Schäfer KH. Muscle hypertrophy and neuroplasticity in the small bowel in short bowel syndrome. Histochem Cell Biol. 2023 Jul 3. doi: 10.1007/s00418-023-02214-4. Epub ahead of print. PMID: 37395792.
34. Heumüller-Klug S, Maurer K, Tapia-Laliena MÁ, Sticht C, Christmann A, Mörz H, Khasanov R, Wink E, Schulte S, Greffrath W, Treede RD, Wessel LM, Schäfer KH. Impact of cryopreservation on viability, gene expression and function of enteric nervous system derived neurospheres. Front Cell Dev Biol. 2023 Jun 12;11:1196472. doi: 10.3389/fcell.2023.1196472. PMID: 37377739; PMCID: PMC10291272.
35. Pahari M. P., Raman A., Bloomenthal A. et al. A novel approach for intestinal elongation using acellular dermal matrix: an experimental study in rats // Transpl. Proc. 2006. Vol. 38. Р. 1849–1850.
36. Wang Z. Q., Watanabe Y., Toki A. Experimental assessment of small intestinal submucosa as a small bowel graft in a rat model // J. Pediatr. Surgery. 2003. Vol. 38. Р. 1596–1601.
37. Nakase Y., Nakamura T., Kin S. [et al.] Endocrine cell and nerve regeneration in autologous in situ tissue-engineered small intestine // J. Surg. Res. 2007. Vol. 137. Р. 61–68], каркасы на основе гиалуроновой [Collins M. N., Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering: a review // Carbohydrate polymers. 2013. Vol. 92. Р. 1262–1279.
38. Grikscheit T. C., Siddique A., Ochoa E. R. [et al.] Tissue-engineered small intestine improves recovery after massive small bowel resection // Ann. Surg. 2004. Vol. 240. Р. 748–754
39. Muldashev E.R., Muslimov S.A., Vyalkov V.A., Galimova V.U., Nigmatullin R.T., Salikhov A.Yu., Selsky N.E., Kiiko Yu.I., Shangina O.R., Bulatov R.T., Musina L.A., Khasanov R.A., Kiiko M.Y. Biomaterial alloplant for regenerative surgery. Patent for the invention RU 2189257 C1, 09/20/2002. Application No. 2001127296/14 dated 10.10.2001.]
Review
For citations:
Nasibullin I.M., Khasanov R.R., Pavlov V.N., Akhatov I.Sh., Bakirov A.A., Shangina O.R., Lebedeva A.I., Danilko K.V., Pyatnitskaya S.V., Bikkuzin T.I., Khaziev I.A., Markelov V.A., Zainullin A.A., Khalilov D.I. MODERN METHODS OF SHORT BOWEL SYNDROME TREATMENT. Bashkortostan Medical Journal. 2023;18(6):86-91. (In Russ.)