Preview

Bashkortostan Medical Journal

Advanced search

PREDICTION OF HEMORRHAGIC STROKE OUTCOMES

Abstract

Hemorrhagic stroke (HS) represents the most severe form of strokes. Early prediction of the outcome of HS allows choosing personalized approach to the patients’ treatment and potentially improve the outcomes.
The aim is to analyze existing approaches to prediction of the outcomes of HS. A review of the literature on the prediction of the outcomes of HS was conducted.
Conclusion. Laboratory predictors of the unfavorable outcome of the HS include low red blood cell count, high white blood cell count as well as high D-dimers level and platelet count. Prolongation of the corrected QT interval according to ECG increased the risk of the lethal outcome of the HS. Computer-tomographic (СТ) predictors of the early enlargement of hematoma represent one of the significant factors explaining unfavorable outcomes of HS. Hence timely detection of those predicting signs on СТ scans of the brain and correction of the factors contributing to the hematoma enlargement can potentially improve the outcomes of HS.

About the Authors

M. A. Kutlubaev
ФГБОУ ВО БГМУ Минздрава России
Russian Federation


A. T. Khairullin
ГБУЗ Дюртюлинская ЦРБ
Russian Federation


I. A. Lakman
Уфимский университет науки и технологии
Russian Federation


A. I. Ozerova
ФГБОУ ВО БГМУ Минздрава России
Russian Federation


M. Anant
ФГБОУ ВО БГМУ Минздрава России
Russian Federation


A. R. Rakhmatullin
ФГБОУ ВО БГМУ Минздрава России
Russian Federation


References

1. Ignatyeva VI, Voznyuk IA, Shamalov NA, Reznik AV, Vinitskiy AA, Derkach EV. Social and economic burden of stroke in Russian Federation. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2023;123(8-2):5-15. (In Russ.) https://doi.org/10.17116/jnevro20231230825

2. Gil-Garcia C.A. [et al.] Essential Topics About the Imaging Diagnosis and Treatment of Hemorrhagic Stroke: A Comprehensive Review of the 2022 AHA Guidelines. Curr Probl Cardiol. 2022; 47(11):101328 (in Engl). doi: 10.1016/j.cpcardiol.2022.101328.

3. Kalasapudi L. [et al.] Scoping Review of Racial, Ethnic, and Sex Disparities in the Diagnosis and Management of Hemorrhagic Stroke. Neurology. 2023; 18(101(3)):e267-e276. (in Engl) doi: 10.1212/WNL.0000000000207406.

4. Eilertsen H. [et al.] Haemostatic therapies for stroke due to acute, spontaneous intracerebral haemorrhage. Cochrane Database Syst Rev. 2023;10(10):CD005951. (in Engl) doi: 10.1002/14651858.CD005951.pub5.

5. Hwang D.Y. [et al.] Guidelines for Neuroprognostication in Critically Ill Adults with Intracerebral Hemorrhage. Neurocrit Care. 2023. (in Engl) doi: 10.1007/s12028-023-01854-7.

6. Kim Y. [et al.] Increased Short-Term Mortality in Patients with Spontaneous Intracerebral Hemorrhage and its Association with Admission Glucose Levels and Leukocytosis. World Neurosurg. 2017; 98:503-511. (in Engl) doi: 10.1016/j.wneu.2016.11.087.

7. Tao C. [et al.] Admission neutrophil count and neutrophil to lymphocyte ratio predict 90-day outcome in intracerebral hemorrhage. Biomark Med. 2017;11(1):33-42. (in Engl) doi: 10.2217/bmm-2016-0187.

8. Zhang F. [et al]. Predictive Accuracy of Neutrophil-to-Lymphocyte Ratio on Long-Term Outcome in Patients with Spontaneous Intracerebral Hemorrhage. World Neurosurg. 2019;125:e651-e657. (in Engl) doi: 10.1016/j.wneu.2019.01.143.

9. Saand A.R. [et al.] Systemic inflammation in hemorrhagic strokes - A novel neurological sign and therapeutic target? J Cereb Blood Flow Metab. 2019;39(6):959-988. (in Engl) doi: 10.1177/0271678X19841443.

10. M. Di Napoli [et al.] C-reactive protein predicts hematoma growth in intracerebral hemorrhage. Stroke. 2014;45(1):59-65. (in Engl) doi: 10.1161/STROKEAHA.113.001721.

11. Kumar M. [et al.] Anemia and hematoma volume in acute intracerebral hemorrhage. Crit Care Med. 2009;37(4):1442-7. (in Engl) doi: 10.1097/CCM.0b013e31819ced3a.

12. Zhang S. [et al.] Associations of Anemia With Outcomes in Patients With Spontaneous Intracerebral Hemorrhage: A Meta-Analysis. Front Neurol. 2019;10:406. (in Engl) doi: 10.3389/fneur.2019.00406.

13. Cui Z. [et al.] A prognostic nomogram incorporating red cell distribution width for patients with intracerebral hemorrhage. Medicine (Baltimore). 2020;99(50):e23557. (in Engl) doi: 10.1097/MD.0000000000023557.

14. Zhou Z. [et al.] Plasma D-Dimer Concentrations and Risk of Intracerebral Hemorrhage: A Systematic Review and Meta-Analysis. Front Neurol. 2018;9:1114. (in Engl) doi: 10.3389/fneur.2018.01114.

15. Zou Y. [et al.] Clinical significance of neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in acute cerebral hemorrhage with gastrointestinal hemorrhage, and logistic regression analysis of risk factors. Exp Ther Med. 2019;18(3):1533-1538. (in Engl) doi: 10.3892/etm.2019.7778.

16. Tsuji H., Shiojima I. Elevated Aminotransferase Levels and Intracerebral Hemorrhage Deaths in a General Japanese Population. Int Heart J. 2023;64(4):678-683. (in Engl) doi: 10.1536/ihj.23-027.

17. Morotti A. [et al.] Intracerebral haemorrhage expansion: definitions, predictors, and prevention. Lancet Neurol. 2023;22(2):159-171. (in Engl) doi: 10.1016/S1474-4422(22)00338-6.

18. Tseng W.C. [et al.] Early spot sign is associated with functional outcomes in primary intracerebral hemorrhage survivors. BMC Neurol. 2021;21(1): 131. (in Engl) doi: 10.1186/s12883-021-02146-3.

19. Ramalu R.R. [et al.] Risk Factors Associated with Outcome of Spontaneous Intracerebral Haemorrhage: Hospital Kuala Lumpur Experience. Malays J Med Sci. 2022;29(1):76-90. (in Engl) doi: 10.21315/mjms2022.29.1.8.

20. Adeoye A.M. [et al.] Prevalence and Prognostic Features of ECG Abnormalities in Acute Stroke: Findings From the SIREN Study Among Africans. Glob Heart. 2017;12(2):99-105. (in Engl) doi: 10.1016/j.gheart.2017.01.002.

21. Szabo J. [et al.] Heart rate variability is associated with outcome in spontaneous intracerebral hemorrhage. J Crit Care. 2018;48:85-89. (in Engl) doi: 10.1016/j.jcrc.2018.08.033.

22. Ehlers M.R. [et al.] The P300 in middle cerebral artery strokes or hemorrhages: Outcome predictions and source localization. Clin Neurophysiol. 2015;126(8):1532-8. (in Engl) doi: 10.1016/j.clinph.2014.10.151

23. Abujaber A.A. [et al.] Predicting 90-day prognosis for patients with stroke: a machine learning approach. Front Neurol. 2023;14:1270767. (in Engl) doi: 10.3389/fneur.2023.1270767.

24. Muresan E.M. [et al.] Admission Emergency Department Point-of-care Biomarkers for Prediction of Early Mortality in Spontaneous Intracerebral Hemorrhage. In Vivo. 2022;36(3):1534-1543. (in Engl) doi: 10.21873/invivo.12864

25. Nutakki A. [et al.] Predictors of in-hospital and 90-day post-discharge stroke mortality in Lusaka, Zambia. J Neurol Sci. 2022;437:120249. (in Engl) doi: 10.1016/j.jns.2022.120249

26. Chang M.C., Kwak S.G., Park D. Prediction of the motor prognosis with diffusion tensor imaging I n hemorrhagic stroke: a metaanalysis. J Integr Neurosci. 2021;20(4):1011-1017. (in Engl) doi: 10.31083/j.jin2004102

27. Khayrullin A.T. [et al.] Clinical and laboratory predictors of unfavorable outcome in hemorrhagic stroke. Zh Nevrol Psikhiatr Im S S Korsakova. 2022;122(3(2)):17-21. (in Russ.) doi: 10.17116/jnevro202212203217.

28. Khairullin A.T. [et al.] Electrocardiographic predictors of the poor outcome of hemorrhagic stroke. Zh Nevrol Psikhiatr Im S S Korsakova. 2022;122(8(2)):61-64. (in Russ.) doi: 10.17116/jnevro202212208261.

29. Rakhmatullin A.R., Kutlubaev M.A., Khayrullin T.A. Predictors of in-hospital mortality among patients with stroke associated with COVID-19. Annals of Clinical and Experimental Neurology. 2023;17(2):16–21. (In Russ.) https://doi.org/10.54101/ACEN.2023.2.2

30. Sposob prognozirovanija ishoda pervichnogo vnutrimozgovogo krovoizlijanija v techenie 90 dnej (Method of predicting the outcome of primary intracerebral hemorrhage within 90 days): patent №22810021 Ros. Federacija; zajavl. 27.04.2023; opubl. 21.12.2023. Bjul. № 36:1-11.


Review

For citations:


Kutlubaev M.A., Khairullin A.T., Lakman I.A., Ozerova A.I., Anant M., Rakhmatullin A.R. PREDICTION OF HEMORRHAGIC STROKE OUTCOMES. Bashkortostan Medical Journal. 2024;19(1):93-98. (In Russ.)

Views: 44


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-6209 (Print)