Preview

Bashkortostan Medical Journal

Advanced search

The role of tumor-associated macrophages in prostate carcinogenesis

Abstract

Prostate cancer is the second most frequently diagnosed tumor in the structure of malignant neoplasms in men in most countries of the world. The formation of ideas about the principles of immunotherapy in oncourology, in particular prostate cancer, is based on the study of molecular aspects of carcinogenesis. 

Purpose of the study is to review the scientific literature about role of mononuclear phagocytes in prostate carcinogenesis. 

Material and methods. We reviewed domestic and foreign publications using the resources of scientific electronic library search – PubMed, elibrary.ru, Google Scholar, Science Direct.

Results Modification of macrophage phenotype from M1-, which fulfills the role of antitumor, to M2- is associated with the formation of cell pools with uncontrolled growth and carcinogenesis. Macrophages promote tumor genesis and participate in progression of existing prostate cancer through redistribution and uncontrolled accumulation of cholesterol, a precursor substrate of hormone-dependent tumors. 

Conclusion. The significant role of mononuclear phagocytes in prostate carcinogenesis indicates the necessity of studying oncopathology and forming new ideas about prostate cancer immunotherapy based on molecular mechanisms. 

About the Authors

E. A. Nadezhdina
ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Russian Federation


A. D. Neryakhin
ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Russian Federation


R. R. Gafurova
ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Russian Federation


G. A. Rafikova
Институт урологии и клинической онкологии ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Russian Federation


K. I. Yenikeeva
Институт урологии и клинической онкологии ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Russian Federation


Yu. V. Sharifyanova
Институт урологии и клинической онкологии ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Russian Federation


E. R. Akramova
Институт урологии и клинической онкологии ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России; ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Russian Federation


References

1. Kaprin AD, Alekseev BJa, Matveev VB., Pushkar' DJu, Govo-rov AV, Gorban' NA, et al. Rak predstatel'noj zhelezy (Prostate cancer). Klinicheskie re-komendacii. Sovremennaja Onkologija. 2021; 23 (2): 211–47. (in Russ).

2. Somov AN, Suslin SA. Prostate cancer. Epidemiology, risk factors and early detection. Profilakticheskaja medicina. 2020;23(3):149-55. (in Russ).

3. Bell KJ, Del Mar C, Wright G, Dickinson J, Glasziou P. Prevalence of incidental prostate cancer: A systematic review of autopsy studies. Int J Cancer. 2015;137(7):1749-57. (in Engl)

4. El-Kenawi A, Gatenbee C, Robertson-Tessi M, Bravo R, Dhillon J, Balagurunathan Y, et.al. Acidity promotes tumour progression by altering macrophage phenotype in prostate cancer. Br.J. Cancer. 2019;121(7):556-566. (in Engl)

5. Ruffell B, Coussens LM. Macrophages and therapeutic resistance in cancer. Cancer Cell. 2015;27(4):462-72. (in Engl)

6. Rajabi M, Adeyeye M, Mousa SA. Peptide-Conjugated Nanoparticles as Targeted Anti-angiogenesis Therapeutic and Diagnostic in Cancer. Curr MedChem.2019;26(30):5664-83. (in Engl)

7. Cendrowicz E, Sas Z, Bremer E, Rygiel TP. The Role of Macrophages in Cancer Development and Therapy. Cancers (Basel). 2021;13(8):1946. (in Engl)

8. Boutilier AJ, Elsawa SF. Macrophage Polarization States in the Tumor Microenvironment. Int.J. Mol. Sci. 2021;22(13):6995. (in Engl)

9. Erlandsson A, Carlsson J, Lundholm M, Fält A, Andersson SO, Andrén O, Davidsson S. M2 macrophages and regulatory T cells in lethal prostate cancer. Prostate. 2019;79(4):363-369. (in Engl)

10. Masetti M, Carriero R, Portale F, Marelli G, Morina N, Pandini M, et.al. Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer. J.Exp. Med. 2022;219(2): e20210564. (in Engl)

11. Xiao L, Wang Q, Peng H. Tumor-associated macrophages: new insights on their metabolic regulation and their influence in cancer immunotherapy. Front. Immunol. 2023; 14:1157291. (in Engl)

12. Popov SV, Sturov NV, Vorob'ev NV, Hajdukov SV. Rol' T-reguljatornyh kletok v progressirovanii raka predstatel'noj zhelezy [The role of T-regulatory cells in the progression of prostate cancer]. Medicinskaja immunologija. 2019; 21 (4): 587-94. (in Russ).

13. Huang R, Wang S, Wang N, Zheng Y, Zhou J, Yang B, et.al. CCL5 derived from tumor-associated macrophages promotes prostate cancer stem cells and metastasis via activating β-catenin/STAT3 signaling. Cell Death Dis. 2020;11(4):234. (in Engl)

14. Li Y, Zhang D, Wang X, Yao X, Ye C, Zhang S, et.al. Hypoxia-inducible miR-182 enhances HIF1α signaling via targeting PHD2 and FIH1 in prostate cancer. Sci. Rep. 2015; 5:12495. (in Engl)

15. El-Kenawi A, Dominguez-Viqueira W, Liu M, Awasthi S, Abraham-Miranda J, Keske A, et.al. Macrophage-Derived Cholesterol Contributes to Therapeutic Resistance in Prostate Cancer. Cancer Res. 2021;81(21):5477-5490. (in Engl)

16. Kridel SJ, Axelrod F, Rozenkrantz N, Smith JW. Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res. 2004;64(6):2070-5. (in Engl)

17. Balaban S, Nassar ZD, Zhang AY, Hosseini-Beheshti E, Centenera MM, Schreuder M, et.al. Extracellular Fatty Acids Are the Major Contributor to Lipid Synthesis in Prostate Cancer. Mol. Cancer Res. 2019;17(4):949-962. (in Engl)

18. Chen M, Zhang J, Sampieri K, Clohessy JG, Mendez L, Gonzalez-Billalabeitia E, Liu XS, et.al. An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. Nat. Genet. 2018;50(2):206-218. (in Engl)

19. Hayashi T, Fujita K, Nojima S, Hayashi Y, Nakano K, Ishizuya Y, et.al. High-Fat Diet-Induced Inflammation Accelerates Prostate Cancer Growth via IL6 Signaling. Clin. Cancer Res. 2018;24(17):4309-4318. (in Engl)

20. Llaverias G, Danilo C, Wang Y, Witkiewicz AK, Daumer K, Lisanti MP, et.al. A Western-type diet accelerates tumor progression in an autochthonous mouse model of prostate cancer. Am.J. Pathol. 2010;177(6):3180-91. (in Engl)

21. Jamnagerwalla J, Howard LE, Allott EH, Vidal AC, Moreira DM, Castro-Santamaria R, et.al. Serum cholesterol and risk of high-grade prostate cancer: results from the REDUCE study. Prostate Cancer Prostatic Dis. 2018;21(2):252-259. (in Engl)

22. Heir T, Falk RS, Robsahm TE, Sandvik L, Erikssen J, Tretli S. Cholesterol and prostate cancer risk: a long-term prospective cohort study. BMC Cancer. 2016; 16:643. (in Engl)

23. Blanc-Lapierre A, Spence A, Karakiewicz PI, Aprikian A, Saad F, Parent MÉ. Metabolic syndrome and prostate cancer risk in a population-based case-control study in Montreal, Canada. BMC Public Health. 2015; 15:913. (in Engl)

24. Keene D, Price C, Shun-Shin MJ, Francis DP. Effect on cardiovascular risk of high-density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: meta-analysis of randomised controlled trials including 117,411 patients. BMJ. 2014;349: g4379. (in Engl)

25. YuPeng L, YuXue Z, PengFei L, Cheng C, YaShuang Z, DaPeng L, Chen D. Cholesterol Levels in Blood and the Risk of Prostate Cancer: A Meta-analysis of 14 Prospective Studies. Cancer Epidemiol Biomarkers Prev. 2015;24(7):1086-93. (in Engl)

26. Zhang Z, Zhou Q, Liu R, Liu L, Shen WJ, Azhar S, Qu YF, Guo Z, Hu Z. The adaptor protein GIPC1 stabilizes the scavenger receptor SR-B1 and increases its cholesterol uptake. J.Biol Chem. 2021; 296:100616. (in Engl)

27. Bull CJ, Bonilla C, Holly JM, Perks CM, Davies N, Haycock P, et.al. PRACTICAL consortium. Blood lipids and prostate cancer: a Mendelian randomization analysis. Cancer Med. 2016;5(6):1125-36. (in Engl)

28. Wu H, Han Y, Rodriguez Sillke Y, Deng H, Siddiqui S, Treese C, et.al. Lipid droplet-dependent fatty acid metabolism controls the immune suppressive phenotype of tumor-associated macrophages. EMBO Mol. Med. 2019;11(11): e10698. (in Engl)

29. Pan Y, Yu Y, Wang X, Zhang T. Tumor-Associated Macrophages in Tumor Immunity. Front. Immunol. 2020; 11:583084. (in Engl)

30. Kovaleva OV, Podlesnaja PA, Grachev AN. Citotoksicheskaja aktiv-nost' makrofagov i ee rol' v patogeneze opuholej [Cytotoxic activity of macrophages and its role in the pathogenesis of tumors]. Al'manah klinicheskoj mediciny. 2022; 50 (1): 13-20. (in Engl)

31. Grachev AN, Samojlova DV, Rashidova MA, Petrenko AA, Kovaleva OV. Makrofagi, associirovannye s opuhol'ju: sovremennoe sos toja-nie issledovanij i perspektivy klinicheskogo ispol'zovanija [Tumor-associated macrophages: current state of research and prospects for clinical use]. Uspehi molekuljarnoj onkologii. 2018;5(4):20–8. (in Engl)

32. Yu Y, Cui J. Present and future of cancer immunotherapy: A tumor microenvironmental perspective. Oncol. Lett. 2018; 16(4):4105-13. (in Engl)

33. Vahora H, Khan MA, Alalami U, Hussain A. The Potential Role of Nitric Oxide in Halting Cancer Progression Through Chemopreven tion. J. Cancer Prev. 2016;21(1):1-12. (in Engl)

34. Cherdyntseva N.V., Mitrofanova I.V., Buldakov M.A., Stakheeva M.N., Patysheva M.R., Zavjalova M.V., Kzhyshkowska J.G. Macrophages and tumor progression: on the way to macrophage-specific therapy. Bulletin of Siberian Medicine. 2017;16(4):61-74. (In Russ.)


Review

For citations:


Nadezhdina E.A., Neryakhin A.D., Gafurova R.R., Rafikova G.A., Yenikeeva K.I., Sharifyanova Yu.V., Akramova E.R. The role of tumor-associated macrophages in prostate carcinogenesis. Bashkortostan Medical Journal. 2024;19(4):80-85. (In Russ.)

Views: 46


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-6209 (Print)