Contemporary data and prospects of research of patients with atherosclerotic stenosis of renal arteries from the point of view of interventional treatment
Abstract
Atherosclerotic renal artery stenosis (ARAS) is a condition in which the renal arteries narrow due to atherosclerosis, which leads to a decrease in blood flow to the kidneys and various renal complications. The effectiveness of interventional treatments such as renal artery angioplasty and stenting remains a matter of debate, making it difficult to select patients for these procedures.
This review is devoted to the diagnosis and treatment of ARAS with special emphasis on the potential role of functional magnetic resonance imaging (MRI) in the assessment of renal function and the mechanisms of its development. Summarizing modern approaches to diagnosis and the results of interventional treatment, the review emphasizes the importance of making informed clinical decisions in the management of ARAS. Functional MRI is becoming a promising non-invasive tool for assessing kidney function, helping in patient stratification and treatment planning.
Main conclusions: The effectiveness of interventional methods of treatment of ARAS requires further study and careful selection of patients. Functional MRI is a promising non-invasive method for assessing kidney function and mechanisms that can become the basis for making more effective clinical decisions in the treatment of ARAS. Further research in the field of diagnostic methods, in particular functional MRI, can expand our understanding and improve the results of treatment of ARAS.
About the Authors
T. S. DokaevaRussian Federation
E. S. Kafarov
Russian Federation
I. U. Vagabov
Russian Federation
L. A. Udochkina
Russian Federation
B. T. Kurtusunov
Russian Federation
S. V. Fedorov
Russian Federation
References
1. Dobrek L. An outline of renal artery stenosis pathophysiology-a narrative review. // Life – 2021. – 11(3) – P. 208.
2. Mishima E. Selection of patients for angioplasty for treatment of atherosclerotic renovascular disease: pre- dicting responsive patients./ Mishima E., Suzuki T., Ito S.// Am J Hypertens – 2020. – 33(5) – P.391–401.
3. Triantis G. Renal artery revascularization is a controversial treatment strategy for renal artery stenosis: a case series and a brief review of the current literature. /Triantis G., Chalikias G.K., Ioannidis E., Dagre A., Tziakas D.N. //Hellenic J Cardiol – 2022. – 65– P. 42-8.
4. Schoepe R. Atherosclerotic renal artery stenosis./ Schoepe R., McQuillan S., Valsan D., Teehan G., [et al.] // Adv Exp Med Biol. – 2017. – 956 – P. 2609–13.
5. Prince M. When and how should we revascularize patients with atherosclerotic renal artery stenosis?/ Prince M., Tafur J.D., White C.J. // JACC Cardiovasc Interv– 2019. –12(6) – P. 505–17.
6. Reinhard M. Renal artery stenting in consecutive high risk patients with atherosclerotic renovascular dis ease: a prospective 2-center cohort study./ Reinhard M., Schousboe K.., Andersen UB., Buus N.H., Rantanen J.M., Bech. J.N., [et al.] // J Am Heart Assoc. – 2022. - 11(7). – P. 421.
7. Bhalla V. Revascularization for renovascular disease: a scientific statement from the American Heart Association./ Bhalla V., Textor S.C., Beckman J.A., Casanegra A.I., Cooper C.J., Kim E.S.H., et al. // Hypertension. 2022. –79(8) – P. 128–43.
8. Kabłak-Ziembicka A. Simple clinical scores to predict blood pressure and renal function response to renal artery stenting for atherosclerotic renal artery stenosis./ Kabłak-Ziembicka A., Rosławiecka A., Badacz R., Sokołowski A., Rzeźnik D., Trystuła M., [et al.] // Pol Arch Intern Med. – 2020. –130(11) – P. 953–9.
9. Badacz R. The maintained glycemic target goal and renal function are associated with cardiovascular and renal outcomes in diabetic patients following stent-supported angioplasty for renovascular atherosclerotic disease./ Badacz R., Kabłak-Ziembicka A., Rosławiecka A., Rzeźnik D., Baran J.., Trystuła M, [et al.] // J Pers Med. – 2022. – 12(4) – Р. 537.
10. Mao W. Capability of arterial spin labeling and intravoxel incoherent motion diffusion weighted imaging to detect early kidney injury in chronic kidney disease. / Mao W., Ding Y., Ding X., Fu C., Cao B., Kuehn B., [et al.] // Eur Radiol. – 2023. – 33(5) – P. 3286–94.
11. Park B.K. Gray-scale, color Doppler, spectral Doppler, and contrast-enhanced renal artery ultrasound: imaging techniques and features.// J Clin Med. – 2022. –11(14) – P. 3961.
12. Aguet J. Contrast-enhanced body magnetic resonance angiography: how we do it. / Aguet J., Gill N., Tassos V.P., Chavhan G.B., Lam C.Z. //Pediatr Radiol. – 2022. – 52(2) – P. 262–70.
13. Orman G. Diagnostic sensitivity and specificity of CT angiography for renal artery stenosis in children. / Orman G., Masand P.M.., Kukreja KU., Acosta A.A., Guillerman R.P., Jadhav S.P. //Pediatr Radiol. – 2021. – 51(3) – P. 419–26.
14. Guo X. Renal artery assessment with non-enhanced MR angiography versus digital subtraction angiography: comparison between 1.5 and 3.0 T./ Guo X., Gong Y., Wu Z., Yan. F, Ding X., Xu X. // Eur Radiol. – 2020. –30(3) – P.1747–54.
15. Lal H. Non-contrast MR angiography versus contrast enhanced MR angiography for detection of renal artery stenosis: a comparative analysis in 400 renal arteries./ Lal H., Singh R.K.R., Yadav P., Yadav A., Bhadauria D., Singh A. // Abdom Radiol. – 2021.–46(5) – P. 2064–71.
16. Morita K. Non contrast renal MRA using multishot gradient echo EPI at 3T MRI./ Morita K., Nakaura T., Yoneyama M., Nagayama Y., Kidoh M., Uetani H., [et al.] // Eur Radiol. – 2021. – 31(8) – P. 5959–66.
17. Eirin A.. Emerging paradigms in chronic kidney ischemia. / Eirin A., Textor S.C., Lerman L.O.// Hypertension. – 2018.–72(5) – P.1023–30.
18. Lin Z. Prediction of split renal function improvement after renal artery stenting by blood oxygen level-dependent magnetic resonance imaging./ Lin Z., Zhang B., Lin L., Wang R., Niu G., Yan Z., [et al.] // Front Cardiovasc Med. –2022. –9 – P.793-777.
19. Nery F. Consensus-based technical recommendations for clinical translation of renal ASL MRI./ Nery F., Buchanan C.E., Harteveld A.A., Odudu A., Bane O., Cox E.F., [et al.] // Magma. – 2020. – 33(1) – P.141–61.
20. Kishida T. Editorial Comment to Magnetic resonance imaging of in vitro urine flow in single and tandem stented ureters subject to extrinsic ureteral obstruction.// Int J Urol. –2022. –29(10) – P.1227.
21. Zhang H.M. Arterial spin labeling MRI for predicting microvascular invasion of T1 staging renal clear cell carcinoma preoperatively./ Zhang H.M., Wen D.G., Wang Y., Bao Y.G., Yuan Y., Chen Y.T., [et al.] // Front Oncol. – 2021. –№11 – P. 644-975.
22. Chhabra J. The role of arterial spin labeling functional MRI in assessing perfusion impairment of renal allografts: a systematic review./ Chhabra J., Karwarker G.V., Rajamanuri M., Maligireddy A.R., Dai E., Chahal M., [et al.] // Cureus. – 2022. – 14(5) – P. 254-28.
23. Romero C.A. Noninvasive measurement of renal blood flow by magnetic resonance imaging in rats./ Romero C.A., Cabral G., Knight R.A., Ding G., Peterson E.L., Carretero O.A. // Am J Physiol Ren Physiol. – 2018. –314(1) – P. 99–106.
24. Yin L. The value of magnetic resonance blood oxygen level-dependent imaging in evaluating the efficacy of advanced cervical cancer combined with radiotherapy and chemotherapy./ Yin L., Zhuang X., Li J.L.// Acta Radiol. –2022. – №4 – P. 284-302.
25. Magawa S. Evaluation of placental oxygenation index using blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) during normal late pregnancy./ Magawa S., Nii M., Ishida M., Takase S., Nakayama R., Enomoto N., [et al.] // J Matern Fetal Neonatal Med. – 2022.–35(25) – P. 5274–81.
26. You W. Hemodynamic responses of the placenta and brain to maternal hyperoxia in fetuses with congenital heart disease by using blood oxygen-level dependent MRI./ You W., Andescavage N.N., Kapse K., Donofrio M.T., Jacobs M., Limperopoulos C. // Radiology. – 2020. – 294(1) – P.141–8.
27. Lal H. Role of blood oxygen level dependent magnetic resonance imaging in studying renal oxygenation changes in renal artery stenosis./ Lal H., Singh P.., Ponmalai K, Prasad R., Singh S.P., Yadav P., [et al.] // Abdom Radiol. – 2022. – 47(3) – P.1112–23.
28. Li X. Perfusion and oxygenation in allografts with transplant renal artery stenosis: evaluation with functional magnetic resonance imaging./ Li X., Wang W., Cheng D., Yu Y., Wu Q., Ni X., [et al.] // Clin Transpl. – 2022. –36(11)– P. 4806.
29. Fu J. Diffusion kurtosis imaging in the pre diction of poor responses of locally advanced gastric cancer to neoadjuvant chemotherapy./ Fu J., Tang L., Li Z.Y., Li X.T., Zhu H.F., Sun Y.S., et al. // Eur J Radiol. – 2020. –128–p.108-974.
30. Le Bihan D. What can we see with IVIM MRI?// Neuroimage. – 2019. –187– P. 56–67.
31. 31.Liang P. Noninvasive assessment of kidney dysfunction in children by using blood oxygenation level-dependent MRI and intravoxel incoherent motion diffusion-weighted imaging./ Liang P., Chen Y., Li S., Xu C., Yuan G., Hu D., [et al.] // Insights Imaging. –2021.– 21;12(1): – P.146.
32. L.E. Bihan. MR imaging ofintravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders./ L.E. Bihan D, Breton E., Lallemand D., Grenier. P, Cabanis E., Laval-Jeantet M. // Radiology. –1986. –161(2) – P. 401–7.
33. Herrmann S.M. Renovascular hypertension./ Herrmann S.M., Textor S.C. // Endocrinol Metab Clin North Am. – 2019. – 48(4) – P. 765–78.
34. Milani B. Image acquisition for intravoxel incoherent motion imaging of kidneys should be triggered at the instant of maximum blood velocity: evidence obtained with simulations and in vivo experiments./ Milani B., Ledoux J.B., Rotzinger D.C., Kanemitsu M., Vallée J.P., Burnier M., [et al.] // Magn Reson Med. –2019. –81(1) – P. 583–93.
35. Feng Y.Z. Intravoxel incoherent motion (IVIM) at 3.0 T: evaluation of early renal function changes in type 2 diabetic patients./ Feng Y.Z., Chen X.Q., Yu J., Liu X.L., Cheng Z.Y., Ren W.W., [et al.] // Abdom Radiol. – 2018. – 43(10). – P. 2764–73.
36. Ge X.Y. Diagnostic accuracy of ultrasoundbased multimodal radiomics modeling for fibrosis detection in chronic kidney disease./ Ge X.Y., Lan Z.K., Lan Q.Q., Lin H.S., Wang G.D., Chen J. // Eur Radiol. –2023. –33(4) – P. 2386–98.
37. Feng C. Artificial intelligence in renal pathology: current status and future. / Feng C., Liu F. // Bosn J Basic Med Sci. –2022. –14. – P. 26-34.
38. Alfieri F. External validation of a deep-learning model to predict severe acute kidney injury based on urine output changes in critically ill patients./ Alfieri F., Ancona A., Tripepi G., Randazzo V., Paviglianiti A., Pasero E, et al. // J Nephrol. –2022. – 35(8) – P. 2047–56.
39. Pan L. Evaluation of renal ischemia- reperfusion injury by magnetic resonance imaging texture analysis: an experimental study./ Pan L., Chen J., Zha T., Zou L., Zhang J., Jin P., [et al.] // Magn Reson Med. – 2021. –85(1) – P. 346–56.
40. Liang F. Using angiographic para- metric imaging-derived radiomics features to predict complications and embolization outcomes of intracranial aneurysms treated by pipeline embolization devices./ Liang F., Ma C., Zhu H., Liu L., Liang S., Jiang P., [et al.] // J Neurointerv Surg. –2022. –14(8) – P. 826–31
Review
For citations:
Dokaeva T.S., Kafarov E.S., Vagabov I.U., Udochkina L.A., Kurtusunov B.T., Fedorov S.V. Contemporary data and prospects of research of patients with atherosclerotic stenosis of renal arteries from the point of view of interventional treatment. Bashkortostan Medical Journal. 2024;19(4):85-93. (In Russ.)