Breast milk microbiota: contribution to child health
Abstract
Breast milk is recognized as an ideal food for newborns and infants due to the presence of not only a variety of nutritional and bioactive components, but also beneficial bacteria. Recently, there has been a growing interest in breast milk (BM) as a potential source of probiotics and commensal bacteria for the infant, which can affect both the colonization of the gastrointestinal tract and the maturation of the child's immune system. As a physiological and constant source of commensal bacteria and probiotic substances, BM plays a primary role in programming a child's health. In modern literature, there is an increasing amount of data indicating better protection of breastfed children from infectious (otitis media, respiratory and intestinal infections) and non-infectious chronic diseases that manifest themselves at a later age (type 2 diabetes mellitus, obesity, cardiovascular, allergic diseases, including atopic dermatitis and bronchial asthma).
The purpose of this review was to summarize modern data on the microbiota of breast milk as a predictor of the health of a growing organism.
About the Authors
V. R. AmirovaRussian Federation
Ufa
L. M. Balashova
Russian Federation
Ufa
M. M. Klimenteva
Russian Federation
Ufa
E. A. Bogomolova
Russian Federation
Moscow
References
1. Netrebenko O. K., Shumilov P. V., Gribakin S. G. Breast milk as a «programming» factor of child’s health: a study of metabolome, microbiome, and their relationship. Voprosi detskoi dietologii. 2021;19(4):40–45. (In Russ) doi: 10.20953/1727-5784-2021-4-40-45
2. García-Ricobaraza, M.; García-Santos, J.A.; Escudero-Marín, M.; Diéguez, E.; Cerdó, T.; Campoy, C. Short- and Long-Term Implications of Human Milk Microbiota on Maternal and Child Health. Int. J. Mol. Sci. 2021;22:11866. (in Engl) doi: 10.3390/ijms222111866
3. Vandenplas Y, Carnielli VP, Ksiazyk J, Luna MS, Migacheva N, Mosselmans JM, Picaud JC, Possner M, Singhal A, Wabitsch M. Factors affecting early-life intestinal microbiota development. Nutrition. 2020; 78:110812. (in Engl) doi: 10.1016/j.nut.2020.110812
4. Li, Y.; Ren, L.; Wang, Y.; Li, J.; Zhou, Q.; Peng, C.; Li, Y.; Cheng, R.; He, F.; Shen, X. The Effect of Breast Milk Microbiota on the Composition of Infant Gut Microbiota: A Cohort Study. Nutrients 2022;14:5397. (in Engl) doi: 10.3390/nu14245397
5. Banić, M.; Butorac, K.; Čuljak, N.; Leboš Pavunc, A.; Novak, J.; Bellich, B.; Kazazić, S.; Kazazić, S.; Cescutti, P.; Šušković, J.; [et al.] The Human Milk Microbiota Produces Potential Therapeutic Biomolecules and Shapes the Intestinal Microbiota of Infants. Int. J. Mol. Sci. 2022;23:14382. (in Engl) doi: 10.3390/ijms232214382
6. Carr LE, Virmani MD, Rosa F, Munblit D, Matazel KS, Elolimy AA and Yeruva L (2021) Role of Human Milk Bioactives on Infants’ Gut and Immune Health. Front. Immunol. 12:604080. (in Engl) DOI: 10.3389/fimmu.2021.604080
7. Martín, R.; Langa, S.; Reviriego, C.; Jimínez, E.; Marín, M.L.; Xaus, J.; Fernández, L.; Rodríguez, J.M. Human milk is a source of lactic acid bacteria for the infant gut. J. Pediatr. 2003;143:754–758. (in Engl) doi: 10.1016/j.jpeds.2003.09.028
8. Hunt, K.M.; Foster, J.A.; Forney, L.J.; Schütte, U.M.E.; Beck, D.L.; Abdo, Z.; Fox, L.K.; Williams, J.E.; McGuire, M.K.; McGuire, M.A. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE 2011;6:e21313. (in Engl) doi: 10.1371/journal.pone.0021313
9. Yi, D.Y.; Kim, S.Y. Human Breast Milk Composition and Function in Human Health: From Nutritional Components to Microbiome and MicroRNAs. Nutrients 2021;13:3094. (in Engl) doi: 10.3390/nu13093094
10. Moossavi, S.; Sepehri, S.; Robertson, B.; Bode, L.; Goruk, S.; Field, C.J.; Lix, L.M.; de Souza, R.J.; Becker, A.B.; Mandhane, P.J.; [et al.] Composition and Variation of the Human Milk Microbiota Are Influenced by Maternal and Early-Life Factors. Cell Host Microbe 2019;25:324–335.e4. (in Engl) doi: 10.1016/j.chom.2019.01.011
11. Zimmermann, P.; Curtis, N. Breast milk microbiota : A review of the factors that influence composition. J. Infect. 2020;81:17–47. (in Engl) doi: 10.1016/j.jinf.2020.01.023
12. Kuchina A.E., Zakharova I.N., Odintsova V.E., Kholodova I.N., Kozlova A.D., Koshkin F.A. Breast milk microbiota of healthy women living in the Russian Federation. Meditsinskiy Sovet. 2024;18(1):7–18. (in Russ) doi: 10.21518/ms2023-494
13. Verduci, E.; Giannì, M.L.; Vizzari, G.; Vizzuso, S.; Cerasani, J.; Mosca, F.; Zuccotti, G.V. The Triad Mother-Breast Milk-Infant as Predictor of Future Health : A Narrative Review. Nutrients 2021;13:486. (in Engl) doi: 10.3390/nu13020486
14. Caroline Atyeo, Galit Alter.The multifaceted roles of breast milk antibodies. Cell. 2021. Mar 18;184(6):1486-1499. (in Engl) doi: 10.1016/j.cell.2021.02.031.
15. Davis EC, Castagna VP, Sela DA, Hillard MA, Lindberg S, Mantis NJ, Seppo AE, Järvinen KM. Gut microbiome and breast-feeding: Implications for early immune development J Allergy Clin Immunol. 2022 Sep;150(3):523-534. (in Engl) doi: 10.1016/j.jaci.2022.07.014.
16. Thai JD, Gregory KE. Bioactive Factors in Human Breast Milk Attenuate Intestinal Inflammation during Early Life. Nutrients. 2020 Feb 23;12(2):581. (in Engl) doi: 10.3390/nu12020581.
17. Zuurveld M, van Witzenburg NP, Garssen J, [et al.] Immunomodulation by human milk oligosaccharides: The otential role in prevention of allergic diseases. Front Immunol 2020;11:801. (in Engl) doi: 10.3389/fimmu.2020.00801
18. Gialeli, G.; Panagopoulou, O.; Liosis, G.; Siahanidou, T. Potential Epigenetic Effects of Human Milk on Infants’ Neurodevelopment. Nutrients 2023;15:3614. (in Engl) doi: 10.3390/nu15163614
19. Sordillo J.E. [et al.] Association of the infant gut microbiome with early childhood neurodevelopmental outcomes: an ancillary study to the VDAART randomized clinical trial // JAMA Netw. Open. 2019;2(3):e190905. (in Engl) doi: 10.1001/jamanetworkopen.2019.0905.
20. Ma, J.; Palmer, D.J.; Geddes, D.; Lai, C.T.; Stinson, L. Human Milk Microbiome and Microbiome-Related Products: Potential Modulators of Infant Growth. Nutrients 2022;14:5148. (in Engl) doi: 10.3390/nu14235148
21. Ejtahed HS, Hasani-Ranjbar S. Neuromodulatory effect of microbiome on gut-brain axis; new target for obesity drugs. J Diabetes Metab Disord 2019;18(1):263–265. (in Engl) doi: 10.1007/s40200-019-00384-4.
22. Mazloom K, Siddiqi I, Covasa M. Probiotics: How effective are they in the fight against obesity? Nutrients 2019;11(2):258 (in Engl) doi: 10.3390/nu11020258.
23. Luoto, R.; Kalliomäki, M.; Laitinen, K.; Isolauri, E. The impact of perinatal probiotic intervention on the development of overweight and obesity: Follow-up study from birth to 10 years. Int. J. Obes. 2010;34:1531-1537. (in Engl) doi: 10.1038/ijo.2010.50
24. Oddi S, Huber P, Rocha Faria Duque AL, [et al.] Breastmilk derived potential probiotics as strategy for the management of childhood obesity. Food Res Int 2020; 137:109673. (in Engl) doi: 10.1002/ajhb.20941
25. Patrakeeva V.P., Shtaborov V.A. Nutrition and the state of the intestinal microflora in the formation of the metabolic syndrome. Obesity and metabolism. 2022;19(3):292-299. (In Russ) doi: 10.14341/omet12893
26. Cacho NT, Lawrence RM. Innate immunity and breast milk. Front Immunol 2017;8:584. (in Engl) doi: 10.3389/fimmu.2017.00584
27. Akker, C.H.V.D.; van Goudoever, J.B.; Shamir, R.; Domellöf, M.; Embleton, N.D.; Hojsak, I.; Lapillonne, A.; Mihatsch, W.A.; Canani, R.B.; Bronsky, J.; [et al.] Probiotics and Preterm Infants: A Position Paper by the European Society for Paediatric Gastroenterology Hepatology and Nutrition Committee on Nutrition and the European Society for Paediatric Gastroenterology Hepatology and Nutrition Working Group for Probiotics and Prebiotics. J. Pediatr. Gastroenterol. Nutr. 2020;70:664–680. (in Engl) doi: 10.1097/mpg.0000000000002655.
28. Henrick BM, Rodriguez L, Lakshmikanth T, [et al.] Bifidobacteria-mediated immune system imprinting early in life. Cell 2021;184(15):3884.e3811–3898.e3811. (in Engl) doi: 10.1016/j.cell.2021.05.030
29. Quin C, Vicaretti SD, Mohtarudin NA, [et al.] Influence of sulfonated and diet-derived human milk oligosaccharides on the infant microbiome and immune markers. J Biol Chem 2020;295(12):4035–4048. (in Engl) doi: 10.1074/jbc.RA119.011351
30. Perez-Cano, F.J.; Dong, H.; Yaqoob, P. In vitro immunomodulatory activity of lactobacillus fermentum cect5716 and lactobacillus salivarius cect5713: Two probiotic strains isolated from human breast milk. Immunobiology 2010;215:996–1004. (in Engl) doi: 10.1016/j.imbio.2010.01.004
31. Gao Y, Nanan R, Macia L, [et al.] The maternal gut microbiome during pregnancy and offspring allergy and asthma. J Allergy Clin Immunol 2021; 148(3); 669–678. (in Engl) doi: 10.1016/j.jaci.2021.07.011
32. Abdel-Gadir A, Stephen-Victor E, Gerbe GK, Noval Rivas M, Wang S, Harb H, [et al.] Microbiota therapy acts via a regulatory T cell MyD88/RORgammat pathway to suppress food allergy. Nat Med 2019;25:1164-74. (in Engl) doi: 10.1038/s41591-019-0461-z
33. Savage JH, Lee-Sarwar KA, Sordillo J, Bunyavanich S, Zhou Y, O’Connor G, [et al.] A prospective microbiome-wide association study of food sensitization and food allergy in early childhood. Allergy 2018;73:145-52. (in Engl) doi: 10.1111/all.13232
34. Bunyavanich S, Shen N, Grishin A, Wood R, Burks W, Dawson P, [et al.] Early-life gut microbiome composition and milk allergy resolution. J Allergy Clin Immunol 2016;138:1122-30. (in Engl) doi: 10.1016/j.jaci.2016.03.041
35. Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, [et al.] Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med 2016;22:1187-91. (in Engl) doi: 10.1038/nm.4176
36. Seppo AE, Bu K, Jumabaeva M, Thakar J, Choudhury RA, Yonemitsu C, [et al.] Infant gut microbiome is enriched with Bifidobacterium longum ssp. infantis in Old Order Mennonites with traditional farming lifestyle. Allergy 2021;76: 3489-503. (in Engl) doi: 10.1111/all.14877
37. Depner M, Taft DH, Kirjavainen PV, Kalanetra KM, Karvonen AM, Peschel S, [et al.] Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nat Med 2020; 26:1766-75. (in Engl) doi: 10.1038/s41591-020-1095-x
38. Petersen C, Dai DLY, Boutin RCT, Sbihi H, Sears MR, Moraes TJ, [et al.] A rich meconium metabolome in human infants is associated with early-life gut microbiota composition and reduced allergic sensitization. Cell Rep Med 2021;2: 100260. (in Engl) doi: 10.1016/j.xcrm.2021.100260
39. Ta LDH, Chan JCY, Yap GC, Purbojati RW, Drautz-Moses DI, Koh YM, [et al.] A compromised developmental trajectory of the infant gut microbiome and metabolome in atopic eczema. Gut Microbes 2020;12:1-22. (in Engl) doi: 10.1080/19490976.2020.1801964
40. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005;122:107-18. (in Engl) doi: 10.1016/j.cell.2005.05.007
41. Cait A, Cardenas E, Dimitriu PA, [et al.] Reduced genetic potential for butyrate fermentation in the gut microbiome of infants who develop allergic sensitization. J Allergy Clin Immunol 2019;144(6):1633–1647. (in Engl) doi: 10.1016/j.jaci.2019.06.029
42. Roduit C, Frei R, Ferstl R, Loeliger S, Westermann P, Rhyner C, [et al.] High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy 2019;74:799-809. (in Engl) doi: 10.1111/all.13660
43. Correa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MA. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunology 2016;5:e73. (in Engl) doi: 10.1038/cti.2016.17
44. Yang W, Yu T, Huang X, Bilotta AJ, Xu L, Lu Y, [et al.] Intestinal microbiotaderived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun 2020;11:4457. (in Engl) doi: 10.1038/s41467-020-18262-6
45. Park J, Kim M, Kang SG, Jannasch AH, Cooper B, Patterson J, [et al.] Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol 2015; 8:80-93. (in Engl) doi: 10.1038/mi.2014.44
46. Brand S, Teich R, Dicke T, Harb H, Yildirim AO, Tost J, [et al.] Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes. J Allergy Clin Immunol 2011;128:618-25.e611-e617. (in Engl) doi: 10.1016/j.jaci.2011.04.035
47. Thorburn AN, McKenzie CI, Shen S, Stanley D, Macia L, Mason LJ, [et al.] Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun 2015;6:7320. (in Engl) doi: 10.1038/ncomms8320
48. Skonieczna-Żydecka K, Janda K, Kaczmarczyk M, Marlicz W, Łoniewski I, Łoniewska B. The effect of probiotics on symptoms, gut microbiota and inflammatory markers in infantile colic : a systematic review, meta-analysis and metaregression of randomized controlled trials. Journal of Сlinical Мedicine. 2020; 9 (4): 999. (in Engl) doi: 10.3390/jcm9040999
49. Simonson J, Haglund K, Weber E, Fial A, Hanson L. Probiotics for the Management of Infantile Colic : A Systematic Review. MCN: The American Journal of Maternal Child Nursing. 2021; 46 (2): 88–96. (in Engl) doi: 10.1097/NMC.0000000000000691
50. Maldonado, J.; Gil-Campos, M.; Maldonado-Lobón, J.A.; Benavides, M.R.; Flores-Rojas, K.; Jaldo, R.; Del Barco, I.J.; Bolívar, V.; Valero, A.D.; Prados, E.; [et al.] Evaluation of the safety, tolerance and efficacy of 1-year consumption of infant formula supplemented with Lactobacillus fermentum CECT5716 Lc40 or Bifidobacterium breve CECT7263: A randomized controlled trial. BMC Pediatr. 2019;19:361–15. (in Engl) doi: 10.1186/s12887-019-1753-7
51. Savino F., Garro M., Montanari P., Galliano I., Bergallo M. Crying Time and RORγ/FOXP3 Expression in Lactobacillus reuteri DSM17938- Treated Infants with Colic: A Randomized Trial. The journal of pediatrics. 2018;192:171-177.e1. (in Engl) doi: 10.1016/j.jpeds.2017.08.062
52. Battersby, C.; Santhalingam, T.; Costeloe, K.; Modi, N. Incidence of neonatal necrotising enterocolitis in high-income countries : A systematic review. Arch. Dis. Child. —Fetal Neonatal Ed. 2018;103:F182–F189. (in Engl) doi: 10.1136/archdischild-2017-313880.
53. Altobelli, E.; Angeletti, P.M.; Verrotti, A.; Petrocelli, R. The Impact of Human Milk on Necrotizing Enterocolitis : A Systematic Review and Meta‐Analysis. Nutrients 2020;12:1322 (in Engl) doi: 10.3390/nu12051322.
54. Quigley, M., Embleton, N.D., and McGuire, W. (2018). Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst. Rev. 6, CD002971. (in Engl) doi: 10.1002/14651858.CD002971.pub5
55. Quigley M, Embleton ND, Meader N, McGuire W. Donor human milk for preventing necrotising enterocolitis in very preterm or very low-birthweight infants. Cochrane Database Syst Rev. 2024 Sep 6;9(9):CD002971. (in Engl) doi: 10.1002/14651858.CD002971.pub6.
56. Miller, J.; Tonkin, E.; Damarell, R.A.; McPhee, A.J.; Suganuma, M.; Suganuma, H.; Middleton, P.F.; Makrides, M.; Collins, C.T. A Systematic Review and Meta‐Analysis of Human Milk Feeding and Morbidity in Very Low Birth Weight Infants. Nutrients 2018;10:707 (in Engl) doi: 10.3390/nu10060707.
57. Thänert, R.; Keen, E.C.; Dantas, G.; Warner, B.B.; I Tarr, P. Necrotizing Enterocolitis and the Microbiome: Current Status and Future Directions. J. Infect. Dis. 2020;223:S257–S263 (in Engl) doi: 10.1093/infdis/jiaa604
58. Pammi, M., Cope, J., Tarr, P.I., Warner, B.B., Morrow, A.L., Mai, V., Gregory, K.E., Kroll, J.S., McMurtry, V., Ferris, M.J., [et al.] (2017). Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis : a systematic review and meta-analysis. Microbiome 5, 31. (in Engl) doi: 10.1186/s40168-017-0248-8
59. Beghetti, I.; Panizza, D.; Lenzi, J.; Gori, D.; Martini, S.; Corvaglia, L.; Aceti, A. Probiotics for Preventing Necrotizing Enterocolitis in Preterm Infants: A Network Meta‐Analysis. Nutrients 2021;13:192 (in Engl) doi: 10.3390/nu13010192
60. Tobias J, Olyaei A, Laraway B, Jordan BK, Dickinson SL, Golzarri-Arroyo L, [et al.] Bifidobacteriumlongum subsp. infantis EVC001 administration is associated with a significant reduction in the incidence of necrotizing enterocolitis in very low birth weight infants. J Pediatr 2022;244:64-71.e2. (in Engl) doi: 10.1016/j.jpeds.2021.12.070
61. Lueschow SR, Boly TJ, Frese SA, Casaburi G, Mitchell RD, Henrick BM, [et al.] Bifidobacterium longum subspecies infantis strain EVC001 decreases neonatal murine necrotizing enterocolitis. Nutrients 2022;14:495. (in Engl) doi: 10.3390/nu14030495
62. Gámez-Valdez, J.S.; García-Mazcorro, J.F.; Montoya-Rincón, A.H.; Rodríguez, D.L.; Jiménez, G.; Alanís, M.T.; Pérez-Cabeza de Vaca, R.; Alcorta, M.R.; Genevieve, M.E.; Lara, V.J. Compositional Analysis Of The Bacterial Community In Colostrum Samples From Women With Gestational Diabetes Mellitus And Obesity. Res. Square, 2020 (in Engl) doi: 10.21203/rs.3.rs-48912/v1
63. Henriksson C, Bostro¨m AM, Wiklund IE. What effect does breastfeeding have on coeliac disease? A systematic review update. Evid Based Med 2013; 18(3); 98–103. (in Engl) doi: 10.1136/eb-2012-100607
64. Cilleruelo ML, Fernández-Fernández S, Jiménez-Jiménez J, Rayo AI, de Larramendi CH. Prevalence and Natural History of Celiac Disease in a Cohort of At-risk Children. J Pediatr Gastroenterol Nutr. 2016; 62(5): 739–745. (in Engl) doi: 10.1097/MPG.0000000000001007
65. Olshan KL, Zomorrodi AR, Pujolassos M, [et al. ]Microbiota and metabolomic patterns in the breast milk of subjects with celiac disease on a gluten-free diet. Nutrients 2021;13 (7):2243. (in Engl) doi: 10.3390/nu13072243
66. Benítez-Páez A, Olivares M, Szajewska H, Pieścik-Lech M, Polanco I, Castillejo G, Nuñez M, Ribes-Koninckx C, Korponay-Szabó IR, Koletzko S, Meijer CR, Mearin ML, Sanz Y. Breast-Milk Microbiota Linked to Celiac Disease Development in Children: A Pilot Study From the PreventCD Cohort. Front Microbiol. 2020;11:1335. (in Engl) doi: 10.3389/fmicb.2020.01335
67. Ajeeb, T.T.; Gonzalez, E.; Solomons, N.W.; Koski, K.G. Human milk microbial species are associated with infant headcircumference during early and late lactation in Guatemalan mother-infant dyads. Front. Microbiol. 2022;13:908845. (in Engl) doi: 10.3389/fmicb.2022.908845
68. Vuong, H.E. Intersections of the microbiome and early neurodevelopment. Int. Rev. Neurobiol. 2022;167:1–23. (in Engl) doi: 10.1016/bs.irn.2022.06.004
69. Lu, J.; Drobyshevsky, A.; Lu, L.; Yu, Y.; Caplan, M.S.; Claud, E.C. Microbiota from Preterm Infants Who Develop Necrotizing Enterocolitis Drives the Neurodevelopment Impairment in a Humanized Mouse Model. Microorganisms 2023;11:1131. (in Engl) doi: 10.3390/microorganisms11051131
70. Xia, J.; Claud, E.C. Gut Microbiome-Brain Axis as an Explanation for the Risk of Poor Neurodevelopment Out-come in Preterm Infants with Necrotizing Enterocolitis. Microorganisms 2023;11:1035. (in Engl) doi: 10.3390/microorganisms11041035
71. Laue, H.E.; Coker, M.O.; Madan, J.C. The Developing Microbiome from Birth to 3 Years: The Gut-Brain Axis and Neurodevelopmental Outcomes. Front. Pediatr. 2022;10: 815885. (in Engl) doi: 10.3389/fped.2022.815885
72. Ihekweazu, F.D.; Versalovic, J. Development of the Pediatric Gut Microbiome: Impact on Health and Disease. Am. J. Med Sci. 2018;356:413–423. (in Engl) doi: 10.1016/j.amjms.2018.08.005
73. Lu, J.; Claud, E.C. Connection between gut microbiome and brain development in preterm infants. Dev. Psychobiol. 2019;61:739–751. (in Engl) doi: 10.1002/dev.21806
Review
For citations:
Amirova V.R., Balashova L.M., Klimenteva M.M., Bogomolova E.A. Breast milk microbiota: contribution to child health. Bashkortostan Medical Journal. 2024;19(5):74-82. (In Russ.)