ROBOT-ASSISTED PARTIAL NEPHRECTOMIES FOR RENAL CELL CARCINOMA: CURRENT APPROACHES, CLINICAL OUTCOMES AND FUTURE PERSPECTIVES
Abstract
Renal cell carcinoma (RCC) is one of the most common malignancies of the urinary system, with an annually increasing incidence. Robot-assisted partial nephrectomies (RAPN) have become the gold standard for treating early-stage RCC due to their high precision, reduced tissue trauma, and improved clinical outcomes. This study aims to analyze the current capabilities and limitations of RAPN, including the use of retroperitoneal access, off-clamp techniques, and the integration of innovative technologies such as artificial intelligence (AI) and 3D printing. A review of recent scientific literature, including peer-reviewed studies, meta-analyses, and reviews published between 2012 and 2024, was conducted. The analysis demonstrated that RAPN outperforms laparoscopic and open methods in reducing blood loss, complication rates, and preserving kidney function. Off-clamp techniques proved effective in minimizing ischemic damage, while retroperitoneal access showed advantages in reducing operative time. The integration of AI and 3D printing offers new opportunities to enhance diagnostic accuracy and surgical planning. However, challenges remain, including high costs, complex training requirements, and limited access to technology. The future of robot-assisted surgeries lies in the adoption of innovative solutions to improve the accessibility and efficacy of this treatment approach.
About the Authors
V. N. PavlovRussian Federation
M. F. Urmantsev
Russian Federation
R. I. Tavabilov
Russian Federation
T. R. Khamidullin
Russian Federation
V. V. Arslanov
Russian Federation
Yu. V. Olefir
Russian Federation
References
1. Ljungberg, B., Albiges, L., Bedke, J., Bex, A., Capitanio, U., Giles, R. H., & Lam, T. B. EAU guidelines on renal cell carcinoma. European Association of Urology. 2023; Retrieved from https://uroweb.org/guidelines/renal-cell-carcinoma. (in Engl)
2. Mittakanti, H.R., Heulitt, G., Li, HF. [et al.] Transperitoneal vs. retroperitoneal robotic partial nephrectomy: a matched-paired analysis. World J Urol. 2020; 38:1093–1099. (in Engl) https://doi.org/10.1007/s00345-019-02903-7.
3. Porpiglia, F., Mari, A., Amparore, D. [et al.] Transperitoneal vs retroperitoneal minimally invasive partial nephrectomy: comparison of perioperative outcomes and functional follow-up in a large multi-institutional cohort (The RECORD 2 Project). Surg Endosc. 2021; 35: 4295–4304. (in Engl) https://doi.org/10.1007/s00464-020-07919-4.
4. Lyu, X., Jia, Z., Ao, L. [et al.] Robot-assisted partial nephrectomy: Can retroperitoneal approach suit for renal tumors of all locations? — A large retrospective cohort study. BMC Urol. 2022;22: 202. (in Engl) https://doi.org/10.1186/s12894-022-01128-y.
5. Brassetti, A., Cacciamani, G. E., Mari, A., Garisto, J. D., [et al.] On-Clamp vs. Off-Clamp Robot-Assisted Partial Nephrectomy for cT2 Renal Tumors: Retrospective Propensity-Score-Matched Multicenter Outcome Analysis. Cancers. 2022;14(18):4431. (in Engl) https://doi.org/10.3390/cancers14184431.
6. Ricciardulli, S., Ding, Q., Zhang, X., Li, H., Tang, Y., Yang, G., Wang, X., Ma, X., Breda, A., & Celia, A. Evaluation of laparoscopic vs robotic partial nephrectomy using the margin, ischemia and complications score system: a retrospective single center analysis. Archivio Italiano Di Urologia E Andrologia. 2015;87(1):49–55. (in Engl) https://doi.org/10.4081/aiua.2015.1.49.
7. Buffi, N., Saita, A., Lughezzani, G., Porter, J., Dell’Oglio, P., Amparore, D., Fiori, C., Denaeyer, G., Porpiglia, F., & Mottrie, A. Robotassisted Partial Nephrectomy for Complex (PADUA Score ≥10) Tumors: Techniques and Results from a Multicenter Experience at Four High-volume Centers. European urology. 2020;77(1):95-100. (in Engl) https://doi.org/10.1016/j.eururo.2019.03.006.
8. Casale, P., Lughezzani, G., Buffi, N., Larcher, A., Porter, J., Mottrie, A., & ERUS Scientific Working Group. Evolution of Robotassisted Partial Nephrectomy: Techniques and Outcomes from the Transatlantic Robotic Nephron-sparing Surgery Study Group. European urology. 2019;76(2):222–227. (in Engl) https://doi.org/10.1016/j.eururo.2018.11.038.
9. Francavilla, S., Abern, M., Dobbs, R., Vigneswaran, H., Talamini, S., Antonelli, A., Simeone, C., & Crivellaro, S. Single-Port robot assisted partial nephrectomy: initial experience and technique with the da Vinci Single-Port platform (IDEAL Phase 1). Minerva urology and nephrology. 2022;74(2):216-24. (in Engl) https://doi.org/10.23736/S2724-6051.21.03919-9.
10. Kim, J., Na, J., Lee, J., Jang, W., & Han, W. Clinical implications for da Vinci SP partial nephrectomy in high complexity tumors; Propensity score matching analysis. Journal of endourology. 2022;36(10):1290-1295. (in Engl) https://doi.org/10.1089/end.2022.0203.
11. Motoyama, D., Matsushita, Y., Watanabe, H., Tamura, K., Ito, T., Sugiyama, T., Otsuka, A., & Miyake, H. Improved perioperative outcomes by early unclamping prior to renorrhaphy compared with conventional clamping during robot-assisted partial nephrectomy: a propensity score matching analysis. Journal of Robotic Surgery. 2020;14:47-53. (in Engl) https://doi.org/10.1007/s11701-019-00924-3.
12. Bertolo, R., Autorino, R., Simone, G., Derweesh, I., Garisto, J., Minervini, A., Eun, D., [et al.] Outcomes of Robot-assisted Partial Nephrectomy for Clinical T2 Renal Tumors: A Multicenter Analysis (ROSULA Collaborative Group).. European urology. 2018;74(2): 226-232. (in Engl) https://doi.org/10.1016/j.eururo.2018.05.004.
13. Furukawa, J., Kanayama, H., Azuma, H., Inoue, K., Kobayashi, Y., [et al.] 'Trifecta' outcomes of robot-assisted partial nephrectomy: a large Japanese multicenter study. International journal of clinical oncology. 2020;25(2):347–353. (in Engl)
14. Tanagho, Y., Bhayani, S., Sandhu, G., Vaughn, N., Nepple, K., & Figenshau, R. Renal functional and perioperative outcomes of offclamp versus clamped robot-assisted partial nephrectomy: matched cohort study. Urology. 2012;80(4):838-43. (in Engl) https://doi.org/10.1016/j.urology.2012.04.074.
15. Carbonara, U., Simone, G., Capitanio, U., Minervini, A., Fiori, C., Larcher, A., [et al.] Robot-assisted partial nephrectomy: 7-year outcomes. Minerva urology and nephrology. 2021;73(4):540–543. (in Engl) https://doi.org/10.23736/S2724-6051.20.04151-X.
16. Camp, C., O'Hara, J., Hughes, D., & Adshead, J. Short-term Outcomes and Costs Following Partial Nephrectomy in England: A Population-based Study. European urology focus. 2018;4(4):579–585. (in Engl) https://doi.org/10.1016/j.euf.2017.03.010.
17. Crockett, M., Malki, M., Hussain, M., Mueller, G., Segaran, S., Tadtayev, S., & Barber, N. The impact of a fellow on a regional roboticassisted partial nephrectomy service. Annals of the Royal College of Surgeons of England. 2022;104(1):28-34. (in Engl) https://doi.org/10.1308/rcsann.2020.7103.
18. Simone, G., Tuderti, G., Anceschi, U., Ferriero, M., Costantini, M., Minisola, F., Vallati, G., Pizzi, G., Guaglianone, S., Misuraca, L., & Gallucci, M. «Ride the Green Light»: Indocyanine Green-marked Off-clamp Robotic Partial Nephrectomy for Totally Endophytic Renal Masses. European urology. 2019;75(6):1008-1014. (in Engl) https://doi.org/10.1016/j.eururo.2018.09.015.
19. Reva, S., Shaderkin, I., Zyatchin, I., Petrov, S., Saint-Petersburg, R., Moscow, R., & St. Petersburg, R. Artificial intelligence in cancer urology. Experimental and Сlinical Urology. 2021;14(2):46-51. (in Russ) https://doi.org/10.29188/2222-8543-2021-14-2-46-51.
20. Wessels, F., Kuntz, S., Krieghoff-Henning, E., Schmitt, M., Braun, V., Worst, T. S., Neuberger, M., Steeg, M., Gaiser, T., Fröhling, S., Michel, M. S., Nuhn, P., & Brinker, T. J. Artificial intelligence to predict oncological outcome directly from hematoxylin and eosin-stained slides in urology. Minerva urology and nephrology. 2022;74(5):538–550. (in Engl) https://doi.org/10.23736/S2724-6051.22.04758-9.
21. Brodie, A., Dai, N., Teoh, J., Decaestecker, K., Dasgupta, P., & Vasdev, N. Artificial intelligence in urological oncology: An update and future applications. Urologic oncology. 2021;39(7):379-399. (in Engl) https://doi.org/10.1016/j.urolonc.2021.03.012.
22. Khizir, L., Bhandari, V., Kaloth, S., Pfail, J., Lichtbroun, B., Yanamala, N., & Elsamra, S. E. From Diagnosis to Precision Surgery: The Transformative Role of Artificial Intelligence in Urologic Imaging. Journal of endourology. 2024;38(8):824–835. (in Engl) https://doi.org/10.1089/end.2023.0695.
23. Nguyen, T. T., Ngo, X. T., Duong, N. X., Dobbs, R. W., Vuong, H. G., Nguyen, D. D., et al. Single-Port vs Multiport Robot-Assisted Partial Nephrectomy: A Meta-Analysis. Journal of endourology. 2024;38(3):253–261. (in Engl) https://doi.org/10.1089/end.2023.0505.
24. Wang, L., & Lee, B. R. Robotic partial nephrectomy: current technique and outcomes. International journal of urology: official journal of the Japanese Urological Association. 2013;20(9):848–859. (in Engl) https://doi.org/10.1111/iju.12177.
25. Rundstedt, F. C., Scovell, J. M., Agrawal, S., Zaneveld, J., & Link, R. E. Utility of patient-specific silicone renal models for planning and rehearsal of complex tumour resections prior to robot-assisted laparoscopic partial nephrectomy. BJU international. 2017;119(4):598–604. (in Engl) https://doi.org/10.1111/bju.13712.
Review
For citations:
Pavlov V.N., Urmantsev M.F., Tavabilov R.I., Khamidullin T.R., Arslanov V.V., Olefir Yu.V. ROBOT-ASSISTED PARTIAL NEPHRECTOMIES FOR RENAL CELL CARCINOMA: CURRENT APPROACHES, CLINICAL OUTCOMES AND FUTURE PERSPECTIVES. Bashkortostan Medical Journal. 2025;20(4):103-110. (In Russ.)
